Analytical Sciences

Abstract − Analytical Sciences, 31(4), 267 (2015).

Fluorescent Protein-based Biosensors to Visualize Signal Transduction beneath the Plasma Membrane
Yoichiro FUJIOKA, Asuka NANBO, Shin-ya NISHIDE, and Yusuke OHBA
Department of Cell Physiology, Hokkaido University Graduate School of Medicine, N15W7, Kita, Sapporo 060-8638, Japan
In response to extracellular stimuli, cells display a variety of behaviors, including proliferation, differentiation, morphological changes and migration. The analysis of the spatiotemporal regulation of signal transduction in living cells is needed for a better understanding of such behaviors, and such investigations have been greatly accelerated by the development of fluorescent protein-based biosensors. Currently, by using these biosensors a range of molecular actions, including lipid metabolism, protein activation, and ion dynamics, can be visualized in living cells. We recently reported that intracellular calcium, with its relevant downstream signaling pathways consisting of the small GTPase Ras and the lipid kinase phoshoinositide-3-kinase (PI3K), can be exploited in an efficient incorporation of influenza A viruses into host cells via endocytosis using a set of biosensors based on fluorescent proteins and the principle of Förster resonance energy transfer. Here, we focus this review on fluorescent protein-based biosensors that have been utilized in our recent research reports.