Analytical Sciences

Abstract − Analytical Sciences, 27(7), 675 (2011).

Development of Micro-Flow Hydrothermal Monitoring Systems and Their Applications to the Origin of Life Study on Earth
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka, Sakai, Osaka 599-8531, Japan
Continuous extensive studies on thermophilic organisms have suggested that life emerged on hydrothermal systems on primitive Earth. Thus, it is well known that hydrothermal reactions are, therefore, very important to study fields deeply related to the origin-of-life study. Furthermore, the importance of hydrothermal and solvothermal systems is now realized in both fundamental and practical areas. Here, our recent investigations are described for the development of real-time and in situ monitoring systems for hydrothermal reactions. The systems were primarily developed for the origin-of-life study, but it was also applicable to fundamental and practical areas. The present techniques are based on the concept that a sample solution is injected to a narrow tubing flow reactor at high temperatures, where the sample is rapidly heated up in a very short time by exposure at to a high-temperature narrow tubing flow reactor with a very short time scale. This enables millisecond to second time-scale monitoring in real time and/or in situ at temperatures of up to 400°C. By using these techniques, a series of studies on the hydrothermal origin-of-life have been successfully carried out.