Analytical Sciences


Abstract − Analytical Sciences, 24(3), 395 (2008).

Adsorption of Zinc(II) and Copper(II) to Shirasu (Pyroclastic Flow)
Hiroo ISAGAI
Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
A fundamental study on the adsorption of metal elements on Shirasu, a pyroclastic flow deposit distributed in southern Kyushu, Japan, has been conducted. The adsorption experiment was carried out by a batch method, and by using Zn(II) and Cu(II) under several conditions; the effects of the initial concentration of metal ions, grain size, and pH were investigated. At smaller grain sizes, the amount of Zn(II) and Cu(II) adsorbed increased. At higher pH values, the amount of Zn(II) and Cu(II) adsorbed increased. Plots of the adsorption isotherm indicated that the adsorption of Zn(II) and Cu(II) on Shirasu followed the Langmuir isotherm model, and the Langmuir isotherm constants, W0 and b, were obtained. W0 at pH 5.0 was approximately two-times larger than that at pH 3.0. This may reflect an increase in the number of anionic binding sites on the surface of Shirasu with an increase in the pH. The b value for Zn hardly changed with an increase in the pH, and for Cu the value decreased with an increase in the pH. These observations suggest that anionic binding sites have a low stability constant, since the apparent stability constant, b, is obtained as the average of stability constanst of all sites on the Shirasu surface.