Analytical Sciences

Abstract − Analytical Sciences, 32(4), 387 (2016).

Zinc Nanoparticles-equipped Bioelectronic Nose Using a Microelectrode Array for Odorant Detection
Qian ZHANG,*,** Diming ZHANG,*,** Nantao LI,*,** Yanli LU,*,** Yao YAO,*,** Shuang LI,*,** and Qingjun LIU*,**
*Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
**Cyber Innovation Joint Research Center, Zhejiang University, Hangzhou, 310027, P. R. China
Bioelectronic noses, such as olfactory cell- and receptor-based biosensors, have important applications for biomimetic odorant detection in various fields. Here, a nanoparticle-equipped biosensor was designed to record extracellular potentials from olfactory receptor cells effectively. In this research, a microelectrode array (MEA) was combined with olfactory epitheliums as the olfactory biosensor to record electrophysiological signals of receptor cells in the epitheliums. Zinc nanoparticles (NanoZn) were employed along with the biosensor for different kinds of odorant measurements, which improved the electrophysiological responses to odor molecules. The NanoZn-equipped biosensor showed greater performance, such as a higher sensitivity and a larger signal-to-noise ratio, than that without the nanoparticles. Thus, this approach provided a promising method to improve the detecting performance of biosensors based on olfactory cells and receptors, which would bring broad application prospects for bioelectronic noses in environmental monitoring, food analysis, and healthcare diagnosis.