No.	コアタイム		所属	発表タイトル
001	A: 13:30~14:30	〇 * 塩野 愛1 岩井 逸子2. 渡辺 壱1, 渡辺 忠一1, 寺前 紀夫1,3	1フロンティア・ラボ株式会社, 2Diablo Analytical, 3東北大	ハートカットEGA-GC/MSによるポリビニルアルコールの不良品解析
002	B: 14:30~15:30	〇*名越 篤史	国士舘大学	架橋デキストランゲルSephadex G-10無水物及び水含有物の熱挙動
003	C: 15:30~16:30	〇 * セリヅ ラニ1, 有井 忠1, 西本 右子2	1株式会社リガク, 2神奈川大理	発生ガス手法による表面処理されたバイオマス炭化物の官能基評 価
004	A: 13:30~14:30	〇桑原 大, 吉泉 麻帆, 笈川 直美, *島田 賢次	アドバンス理工株式会社	鋼材による熱膨張と電気抵抗の比較試験
005 S	13:30~14:30, 16:30~17:00	〇周藤 康介1, 佐藤 圭2, 奈良 大樹1, 撹上 将規1, 山延 健1, *上原 宏樹1, 小坂田 耕太郎2, 竹内 大介3	1群馬大院·理工, 2東工大·化生研, 3弘前大院·理工	新規6 員環ポリオレフィンの昇温過程における構造変化と熱物性
006	B: 14:30~15:30	〇畠山 立子1 * , 飯島 美夏2, 畠山 兵衛1	1リグノセルリサーチ, 2青森保健大	水溶性セルロース誘導体のガラス転移
008	C: 15:30~16:30	〇 * 飯島 美夏1, 畠山 立子2, 畠山 兵衛2	1青森県立保健大, 2リグノセルリサーチ	κ-カラギーナン/セルロース及び関連多糖混合ゲルの熱的挙動
009	A: 13:30~14:30	小松 実紗子1, セリヅ ラニ レゴ2, 有井 忠2, *西本 右子1	1神奈川大理, 2(株)リガク	木質バイオマス炭化物のVOC吸脱着特性に対する表面処理の影響
010 S	13:30~14:30, 16:30~17:00	〇田中 悠平, *西本 右子	神奈川大理	木質系バイオマスのVOC吸着特性
011 S	13:30~14:30, 16:30~17:00	〇丸山 毅真1, 小松 実紗子1, 重本 匠実1, 影島 一己2, *西本 右子1	1神奈川大理, 2(株)ウテナ	化粧品原料に用いられる粘土鉱物の臭い物質吸着特性と熱分析
012 S	13:30~14:30, 16:30~17:00	〇荒井 健, 西本 右子*	神奈川大理	NaClと水の共晶の融解過程に注目した微量成分濃縮法-外部磁場の影響-
013 S	13:30~14:30, 16:30~17:00	〇中野 怜. 西本 右子*	神奈川大理	塩及びポリエチレングリコールを含有するメチルセルロースヒドロゲルのゲル化過程-塩化物と硝酸塩の違いー
014	B: 14:30~15:30	〇*江尻 ひとみ, 小林 華栄	日本サーマル・コンサルティング	Chipセンサー検出方式 超高速走査 DSC による熱分析の発展
015	C: 15:30~16:30	〇孫 カイイン, 下田 瑛太, *西山 佳利	株式会社日立ハイテクサイエンス	試料観察DMAによるプリント基板の剝離挙動の評価
016	A: 13:30~14:30	〇*阿部 陽香	産業技術総合研究所	DSCによる物質・材料の熱特性評価(Ⅲ) - 粒子の比熱容量測定 -
017	B: 14:30~15:30	〇泉谷 英治, 梅澤 直樹, 坂本 賢治, 嘉指 博之, *鈴木 俊之	(株)パーキンエルマージャパン	DSCを用いた工業用途のDSC比熱容量測定と判断 その2
018	C: 15:30~16:30	〇鈴木 秀一, *治田 修	メトラー・トレド株式会社	共押出PA-PPパイプ: 高速DSCを用いた火炎処理による形態変化の測定