

4.注入口の選択

5.カラムの入口で何が起きているか?

Milestones

年	A	歷史的事項
1906年	M.S.Tswett	Ber. Deusch. Bot. Ges., 24 , 316,384(1906) 「クロマトグラフィー」と名付け、植物色素の分離をした
1941年	A.J.P. Martin, R.M.Synge	Biochem J., 35 , 1358 (1941) 液ー液クロマトグラフィーのアイデア (1952年 ノーベル賞)
1952年	A.T.James, A.J.P.Martin	Analyst(London) 77, 915 (1952) 気 - 液クロマトグラフィ - を創始した
1958年	M.J.E.Golay	"Gas Chromatography 1957" ed. by V.J.Coates et al, p.1, Academic Press, New York (1958) キャピラリ - カラムの理論について報告した
1958年	M.J.E.Golay	"Gas Ghromatography 1958" ed.by D.H.Desty, p.36 Butterworth London(1958) さらに詳しい理論と応用例を報告した
1958年	G.Dijkstra, J.Degoey	同上 p.56、キャピラリ - カラム実用化の可能性と固定相の動 的塗布法に関する報告
1959年	D.S.Desty,A.G oldup,B.H.F.W hyman,	J.Inst.Petroleum, 45 , 287(1959) キャピラリ - カラムによる複雑な組成の炭化水素の分離
1960年	D.S.Desty, J.N.Haresnip,B. H.F.Whyman	Anal. Chem., 32 , 302 (1960) ガラスキャピラリ - 製造装置の提案
1968年	K.Grob	Helv.Chim. Acta, 51 , 729 (1968) 化学結合型固定相による有機リチウム化合物の分離をした
1979年	R.Dandenneau, E.H. Zerenner	HRC&CC., 2 , 351 (1979) 溶融シリカキャピラリ - の開発をした

8 March 1903 M.S. Tswett Warsaw University

Figure 1: M.J.E. Golay, circa 1960. Leslie S. Ettre. Evolution of Capillary Columns for Gas Chromatography. LCGC 19(1),48-59, (2001)

61. Sciences

ガスクロ自由自在 準備・試料導入編,2(2007) 丸善

Separation of styrene oligomers (molecular weight standard for MW = 580). The numbers in parentheses indicate the number of styrene units in the oligomer. Column: MS-100H-C18 (8KM, 9KM, and another 9KM). Effective length: 1130 cm. Mobile phase: acetonitrile-water (95/5). ΔP = 39.5 MPa. u = 1.73 mm/s. Detection: 210 nm. Temperature: 30 ° C. The inset is a magnification of the chromatogram for the pentamers.

Kosuke Miyamoto; Takeshi Hara; Hiroshi Kobayashi; Hironobu Morisaka; Daisuke Tokuda; Kanta Horie; Kodai Koduki; Satoshi Makino; Oscar Núñez; Chun Yang; Takefumi Kawabe; Tohru Ikegami; Hirotaka Takubo; Yasushi Ishihama; Nobuo Tanaka; *Anal. Chem.* 2008, 80, 8741-8750.

High Resolution Separations HPLC vs GC

HPLC

GC

◆微粒子カラム<2µm</p> 理論段数>30,000 (L=150mm 実用圧力下)

◆モノリスカラム 理論段数>100,000 (L>1m 実用圧力下)

◆キャピラリー 内径0.25mm 理論段数>100,000 (3,000/m) (L=30-60m He)

◆キャピラリー 内径0.1mm 理論段数>300,000 (10,000/m) $(L=30-60m H_2)$

◆移動相の線速度 1-5mm/秒 ◆移動相の線速度 200-500mm/秒

 分離の速度: GCが圧倒的に有利 •適応対象の広さ: LCが圧倒的に有利 ・ピークキャパシティー(ピークの数/情報):ややGC有利 •検出器の使いやすさ(汎用性と選択性):ややGC有利

fil Sciences

参考:津田孝雄 クロマトグラフィー(丸善)

B2O3 8SiO2

hi hriences

図1.天然水晶/石英(結晶性)、溶融シリカガラス(アモルファス)とその他のガラス

F.I.Onuska; Open Tubular Column Gas Chromatography in Environmental Sciences, 29(1984) Plenum Press NY

光ファイバーの分野;溶融シリカ層に多数存在するマイクロクラックがファイバーを曲げ たときに成長して折れやすくなるのを防ぐ。また、周囲の雰囲気や外力から保護する。 表面のコーティング層

ポリイミド層が剥離していたり傷が付いていると、水蒸気の侵入により、シラノールが発生し脆くなる

図2.溶融シリカ管の破断メカニズム

表面シラノールの不活性化と固定相の濡れ性の改善

シリカ表面の処理(表面改質)

- ☞ 固定相―シリカ表面の濡れ性の改善
- ☞ Si-OHなどの活性点の処理

シリカ表面とその改質の基本的な文献

Martin J.J. Hetem ; *Chemically Modified Silica Surfaces in Chromatography – A Fundamental Study*, (1993) Huthing, Heidelberg
M. Hetem, C. Cramers, et al. ; *J. of Chromatgr.*, 447, 3(1989)

•L. G. Blomberg ; HRC & CC, 7, 232(1984)

•L. G. Blomberg ; HRC & CC, 8, 632(1985)

•R. F. Arrendale, et al. ; J. of Chromatgr., 208, 209(1981) ← Wax系

代表的な表面改質試薬

シラノールの吸着:水素結合、ルイス塩の形成

代表的な評価試薬

osed siloxane bond(弱)			
Exposed basic sites(強)			
e Exposed acid silanol(強)			
Shielded acid silanol(弱)			
Nicotine Acid silanol(弱)			

1980年代~ 表面処理の目的も GLOBAL SOLUTION 徐々に変化 fil Sniences

キャピラリーカラム: InertCap 17、0.25mmID、Df=0.25μm 観察手法: 共焦点レーザー走査型顕微鏡、測定レーザー波長458nm

卵の殻のように薄い!

ドライ対物レンズ20倍(デジタルズーム1)、水漬対物レンズ40倍(デジタルズーム40) 前処理(液相染色操作) た合流流いるリレン(0,01g, THE1m)に溶解、結実10m)活用

キャピラリーカラムの特長

1020年(Again - 1937) 染色溶液:ペリレン0.01g、THF1mlに溶解。純水10ml添加 染色:50cm長さのキャピラリーカラムに注入。一晩放置。注入溶液を排出。純水にて洗浄。

レーザー共焦点顕微鏡での固定相膨潤の観察手順 1.フルオロセインを溶媒に溶かして固定相にしみ込 ませ、十分に溶媒を飛ばす。

2.数µlのジクロロメタンをカラムに毛細管現象により 吸引させる。

3.ジクロロメタンを自然乾燥させる。

Carbowax[™] (Polyethylene Glycol) ^{™:Dow}

Wikipediaより抜粋; ポリエチレングリコール (polyethylene glycol、略称 PEG) は、エチレングリコールが重合した構造をもつ高分子化合物 (ポリ エーテル) である。ポリエチレンオキシド (polyethylene oxide、略称PEO) も基本的に同じ構造を有する化合物であるが、PEGは分子量 50,000 g/mol 以 下のもの (エチレングリコールの重合体) をいい、PEOはより高分子量のも の (付加重合体) をいう。両者は物理的性質 (融点、粘度など) が異なり用 途も異なるが、化学的性質はほぼ同じである。

PEGの化学結合 (¬線、DCUP[Bis(-dimethylbenzyl)peroxide)]、シランカップリング剤・・・などを使う

自己架橋固定相(INNOWAX)

R. C. M. de Nijs, J. Zeeuw; HRC & CC, 5, 501(1982) 最初の固定化
J. Buijten, et al.; J. Chromatgr., 268, 387(1983) DCUP+Methyl(vinyl)cyclopentasiloxane(V₅)
L. Bystricky; HRC & CC, 9, 240(1986) 高濃度のDCUP
M. Horka, et al.; Chromatographia, 21, 454(1986) γ-glycidoxypropyltrimethoxysilaneで素管の処理後、 aliphatic pluriisocyanate利用 300 以上

化学結合形固定相の利点と問題点(ブリードとカラムの劣化)

☞ メリット

◆適用範囲の拡大

- •低温から高温まで:使用温度範囲の拡大
- •薄膜(リテンションギャップ)から厚膜の液相まで固定化可能
- ・強極性の液相まで固定化可能
- •大量注入が可能、溶媒で洗浄可能な固定相も可能

☞ 注意点

◆切れた後の固定相は?

McReynolds定数の変化・活性サイト(酸の発生)

揮発性の酸・アルカリ

GLOBAL SOLUTION

fil Sciences

昇温分析を繰り返すことにより、酸性試料のリテンション タイムの変動、または吸着が顕著に起こる場合があります。 最終的に完全に吸着する場合もあります。

- Dicyclohexylamine 2.
- 3. Methyl-n-Undecanoate
- 1-Decanol 4.

9.

- 5. n-Octadecane
- 6 n-Hecxanoic Acid
- 7. 2.6-Dimethylphenol
- 8. 3.5-Dimethylaniline n-Eicosane

D:ジオキサカルブ,

PhーA, Ph−B, Ph−C:それぞれ該当するカルバメート系農薬の分解により生成するフェノール類 ◆ GLOBAL SOLUTION

fil Sichences

Hans-Martin Muller and Hans-Jurgen Stan, J.High Resol.Chromatogr., 13, 759(1990)から一部修正して記載

最近の

最近のキャピラリーカラムは高性能!

◆クロマトグラム全体とベースライン付近を注意して観察しよう!

◆カラムの状態に敏感になろう!カラム評価サンプルは役に立つ!

・リーディングピーク
 分析種(分析対象成分)の試料量が多すぎる
 分析種に対する固定相の溶解力が低い
 分析種がカラム内で分解(ある種の成分はテーリング)
 ・テーリングピーク&ピークの消失
 カラム内に吸着活性点が発生
 (入口の汚れ、固定相のトラブル)
 まれに検出器側の金属、温度(コールドスポット)

注入口はGCのアキレス腱

まとめ

◆多くのトラブルは、注入口とカラム入口に発生!

- カラムの内径
- 固定相の膜厚
- 固定相液体と分析種の相溶性
- ・ 異性体の影響
- ・ 試料マトリクスと主成分

注入される分析種の量とカラム、検出器の関係

4

微量分析における注入口の選択肢!?

▶オンカラム	: ©	デリケートな分析種、定量性
	×	溶媒の選択、カラムの交換の手間
▶高圧パルスド	: 🔘	容易に実施、熱ストレスの低減、カラムの保護
スプリットレス	×	ディスクリミネーション、残渣の影響、溶媒の選択
≻PTV	: ©	ディスクリミネーションの低減(定量性)、カラムの保護
	: ×	残渣の影響、高価

※自動インサート交換は、スプリットレスやPTVの問題の一部を解決!?

- マトリクス効果による回収率異常
 エチレングリコールの添加?起爆注入?・・・FPDやECDよりもMSの方が影響が大きい!
- ・ ブロードなピーク/ピーク割れ *きれいなフラデットゾーンの形成*

カラム/リテンションギャップ(プレカラム)の入口付近

試料バンドと得られるクロマトグラムの関係

1) 注入時の広がりが無く,非常にシャープに試料を導入したとき

L SOLUTION GL Sciences

	Hexan	Ether	Aceton	Benzene	CH2CI2	MeOH	i-PropOH
0.05µm OV-1	18	17	47	23	25	270	28
0.15µm OV-1	20	16	80	19	17	230	30
0.30µm SE-54	20	17	25	20	16	235	25
2.00 µm SE - 54	13	9	20	8	9	200	20
0.40µm OV - 1701	26	19	23	20	18	240	30
0.22µm OV-17	23	26	20	18	17	30	20

Length of the Flooded Zone in the Column Inlet and Evaluation of Different Retention Gap for Capillary GC; K.Grob,H.P.Neukom,M.-L.Riekkola; J.High Resol.Chromatogr.,7,320 (1984)

<u>内径0.32mm,25 各種キャピラリーカラムにおけるフラデットゾーンの長さ cm/µl</u>

内面処理方法 内面の極性	Methyl 無極性	Cyano/P henyl 中極	PEG 強極性
Pentane, Hexzne, Heptan			×
Benzene, Toluene			
Diethylether			
Acetone, Methylethylketone	×		
Chloroform, Dichloromethane			
Methanol, Ethanol	×		
Water	×	×	

混合溶媒も解決法 の一つ!

リテンションギャップカラム(GL総合カタログより)

溶媒効果とリテンションギャップ効果による試料バンドのフォーカッシング

61. Sciences

