

固体高分子形燃料電池における 水素中不純物(CO、H₂Sなど)の影響

2016年3月4日 (一財)日本自動車研究所 松田佳之

1. 背景および目的

- 2. 水素燃料中の硫黄化合物による 燃料電池の性能低下機構解析
- 3. 水素燃料中のCOによる 燃料電池の性能低下機構解析

・人口増大・エネルギー消費の増加・経済発展 CO₂などの温室効果ガス削減(1997年、京都議定書)

・日本の運輸部門におけるCO₂発生割合は、排出量全体の17%(2012年)¹⁾

CO2削減への取り組み

- 自動車の燃費改善
- <u>次世代自動車の開発・普及</u>
 (電気自動車、燃料電池自動車など)
- 燃料電池自動車(FCV)
 -2014年12月に市販開始
- ・水素ステーション

-大都市圏を中心に順次 設置がすすめられている

1) 国立環境研究所、日本国温室効果ガスインベントリ報告書(2014)

燃料電池とは

く特徴>

・燃料を供給しながら電気を生成する 発電デバイス(一次・二次電池と異なり、 電気を貯めるものではない)

・低温でも高効率

 ・作動中の環境負荷が少ない(CO₂、 NOxなどを排出しない)

く歴史>

・英国のW. Grove卿が1839年に燃料
 電池の実験に成功

・1950年頃~宇宙用として開発(アル カリ形)

・1980年代~定置用・移動用電源として日米欧など各国で積極的な開発

燃料 電池の 種類	固体酸化 物形 (SOFC)	溶融炭酸 塩形 (MCFC)	リン酸形燃 料電池 (PAFC)	固体高分 子形 (PEFC)	直接メタ ノール形 (DMFC)	アルカリ形 (AFC)
運転温 度 / ℃	700 ~ 1000	600~700	160~210	~100	~80	~ 240
負極燃 料/正極 酸化剤	H ₂ ,CO / 空気	H ₂ ,CO / 空気	H ₂ / 空気	H ₂ / 空気	メタノール / 空気	H ₂ / O ₂ (CO ₂ 不含)
電解質	ZrO ₂ (Y ₂ O ₃)など	Li/K, Li/Na 炭酸塩	H₃PO₄ 水溶液	プロトン 交換膜	プロトン 交換膜	KOH 水溶液
電荷 担体	O ²⁻	CO32-	H+	H⁺	H⁺	OH-
主な電 極触媒	Ni, LaNiOx	Ni, NiO	Pt/C	Pt/C	Pt/C	Ni
主な 用途	家庭用~ 大規模 発電用	分散電源 (中規模)	分散電源 (中規模)	自動車、家 庭用	携帯用	宇宙用

固体高分子形燃料電池

- •電解質にプロトン交換膜(数10 µm)を 用いる
- ・室温~100°C程度の低温で動作可能
- ・現状では白金系触媒を用いる(コスト 高)
- ・自動車用、定置用として開発・市販化

燃料電池自動車とステーションの普及に向けたシナリオ

●2010年3月に燃料電池実用化推進協議会(FCCJ)から発表¹⁾

[※]前提条件:FCVユーザーのメリット(価格・利便性等)が確保されて、順調に普及が進んだ場合

現状の水素製造は、化石エネルギーの水蒸気改質による方法が主 (将来はCO₂を排出しない自然エネルギー由来の水素製造が期待)

燃料電池自動車用水素の品質規格

<u>・2012年に燃料電池自動車用水素の 品質規格が発行</u>

(燃料電池などへの影響/水素循環系に おける濃縮/分析技術などを考慮)

・2015年~燃料電池の低コスト化(白 金量低減、高出力密度化)や、新規水 素供給技術を見据えた品質規格見直し 開始(2018年の規格化を目指す)

Type I, Type II Characteristics Grade D Hydrogen fuel index 99.97% (minimum mole fraction) Total non-hydrogen gases 300 µmol/mol Maximum concentration of individual contaminants (µmol/mol) 5 Water (H_2O) Total hydrocarbons (Methane basis) 2 Oxygen (O_2) 5 300 Helium (He) Total Nitrogen (N_2) and Argon (Ar)100 2 Carbon dioxide (CO_2) Carbon monoxide (CO) 0.2 Total sulfur compounds (H₂S basis) 0.004 Formaldehyde (HCHO) 0.01 Formic acid (HCOOH) 0.2 0.1 Ammonia (NH_3) Total haloganated compounds 0.05 (Halogenate Ion basis) Maximum particles concentration 1 mg/kg

FCV用水素規格(ISO 14687-2), 2012年12月発行

水素ステーションにおける不純物測定例1)

表 1.1.1.3-3 製品水素分析結果(2008 年 12 月)

l I	分析值 ¹⁾ (単位:vol pom)								
分析对象物質	市原 村 灯油 脱 改質	横浜·大黒	川崎 メタノール 改智	千住都市ガス改置	セントレア 都市ガス 改哲	大阪都市ガス改置	相模原 ⁶⁰ アルカリ 水電解	検出下限 濃度	分析方法 (概略)
27 10 2 30 100		脱硫ガソリン 改管							
一酸化炭素	0.06	<0.01	<0.01	0.01	0.05	0.16	2 19 4 1	0.01	GC-FID
二酸化炭素	<0.01	<0.01	<0.01	< 0.01	0.02	0.35	S 544	0.01	GC-MS
全炭化水素2) :メタン	< 0.05	<0.05	<0.05	<0.05	<0.05	0.19	() (# <u>1</u> 23	0.05	GC-FID
:非メタン	0.13	<0.05	<0.05	< 0.05	<0.05	0.40	() s i i	0.05	GC-FID
ベンゼン	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	(int)	0.005	GC-MS
硫黄化合物3>	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	1.57	0.0001	IC
メタノール	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	9 - 8 4 1	0.01	GC-MS
ホルムアルデヒド	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	() (+)	0.01	DNPH/HPLC
アセトアルデヒド	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.01	DNPH/HPLC
ギ酸	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01) , ;	0.01	IC
アセトン	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01	DNPH/HPLC
アンモニア	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0 - 19 1 -	0.001	IC
水分	<0.5	3.4	<0.5	<0.5	<0.5	0.74	4	0.5	露点計
酸素	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	1	0.01	微量酸素計
アルゴン	< 0.03	1.13	<0.03	1.34	0.39	0.54	ि ्यः	0.03	0C-MS
窒素	0.04	24.6 4)	0.32	6.91	10.9	2.05	26.9 40	0.03	GC-MS
ヘリウム	<3	<3	<3	3	<3	3	(4)	3	GC-TCD
ハロゲン化合物 ⁵ :F	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	() () () () () () () () () ()	0.05	IC
:CI	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	() s u	0.05	IC
:Br	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05) (H	0.05	IC

1)濃度は全て体積換算とした。

2) 全ての炭化水素濃度を炭素数1の化合物換算で合計して定量した。

3)全ての硫黄化合物をSO42 換算で合計して定量した。

4) 高濃度のため、GC-MSでの定量が困難であり、GC-TCDにて定量した。

5) それぞれF、CI、Br濃度として定量した。

6) 窒素のみの分析。

1)NEDO事業「JHFC Project」成果報告書(2011)

・COの検出結果が規格値(0.2ppm)と
 近いケースがある
 ・硫黄化合物は検出下限以下

目的

燃料電池への影響が大きい物質(硫黄、CO) による性能低下機構解析 ⇒そのためには発電中の排出成分(ガス)を リアルタイムで測定することが重要

各種ガス分析装置の比較

	濃度範囲	必要なガス量	妨害成分	
ガスクロマトグ ラフ(GC)	O(ppbレベルも 可能)	0(少ない)	△~〇(水の干渉、 カラム劣化)	⇒GCを 本研究
四重極型質量 分析計(Q-MS)	× (定量下限は~ 数10 ppm程度)	0(少ない)	×(COがN ₂ の ピークと重なる)	に迴力
赤外分光(ND- IR、FT-IRなど)	△(ppm程度)	× (1L min ⁻¹ 程度必要)	×(水の干渉)	

検出器の検討

成分	H_2S, SO_2	CO
検出器	FPD (<u>F</u> lame <u>P</u> hotometric <u>D</u> etector)	PDHID (<u>P</u> ulse <u>D</u> ischarged <u>H</u> elium <u>Ion D</u> etector)
原理	硫黄を含む試料を水素中で燃焼させ たときの発光を、光電子増倍管で測 定	励起させたHeが基底状態に戻る際 に発生する光エネルギーを利用し、 対象成分をイオン化して検出
選定理由	硫黄成分を選択的に感度よく、安定 して測定可能	TCDやFIDに比べてCO、CO ₂ が低 濃度まで測定可能(~数10ppb)

1. 背景および目的

- 2. 水素燃料中の硫黄化合物による 燃料電池の性能低下機構解析
- 3. 水素燃料中のCOによる 燃料電池の性能低下機構解析

H₂S濃度および白金担持量の影響

Fig. Voltage change by H_2S at $T_{cell} = 80^{\circ}C$, 1 A cm⁻² and anode platinum loading of 0.4 mg cm⁻².¹)

電圧低下初期のH₂Sの影響は供給量で整理できる(蓄積型)

1) Y. Matsuda et al., JARI Research Journal, 32(7) 345-348 (2010).

Fig. Change of the electrochemically active surface area (ECA) before and after the H_2S (0.85 ppm, 25 h) test.

Fig. Effect of SO₂ (2 ppm) on PEFC performance at 80°C, 1000mA cm⁻² and 0.3 / 0.3 mg-Pt cm⁻².

 アノード出口でSO₂に加え、H₂Sも検出 初期のH₂S濃度は徐々に増加
 急激な電圧低下の後に、H₂S, SO₂濃度が減少
 OCVでH₂Sが脱離し、セル電圧が回復

- ・自動車用燃料電池システムを想定した水素循環系では、電圧低下が見られるまでは濃縮しない(ただし急激な電圧低下後は濃縮)
- 1) R. Mohtadi et al., Electrochem. Solid-State Lett., 6(12), A272-A274 (2003)
- 2) A. Contractor, L. Hira, *Electroanal. Chem.* 93, 99(1978)
- 3) D. Imamura, E. Yamaguchi, ECS Trans., 25(1) 813-819(2009).

1. 背景および目的

- 2. 水素燃料中の硫黄化合物による 燃料電池の性能低下機構解析
- 3. 水素燃料中のCOによる 燃料電池の性能低下機構解析

1) (財)石油産業活性化センターほか、燃料電池システム等実証研究(第2期JHFCプロジェクト)報告書、P.24、平成23年3月

・硫黄化合物の燃料電池アノードにおける吸着・反応を調査 ⇒H₂S、SO₂はアノードへの吸着による影響が大きい 一部はカソードにも移動し、吸着する可能性あり

•COの燃料電池における吸着・反応を調査

⇒アノードへの吸着による影響が大きい セル温度60°CではCOが低濃度(0.2 ppm)でも、 CO吸着量が増大

- ・ガスクロマトグラフによる出ロガス分析は燃料電池における不 純物の挙動を把握するために有効なツール
- •今後の課題:より低濃度での硫黄成分測定
 - -低白金量でかつ低濃度(ppbレベル)、数10時間での測定 -検出器の感度向上と、安定性を両立させることが必要
- 謝辞 本研究は、NEDO(新エネルギー・産業技術総合開発機構)の支援により行われました。 関係各位に深く感謝いたします。