

超精密質量GC-HRT TOFMS

LECOの質量分析ラインナップ

開発のコンセプト

<u>1 パフォーマンスの両立</u> 高速データ取得 (200 Hz以上) 高い質量精度 (1 ppm以内) 分解能 (50000 FWHM以上) 高い安定性

超高分解能データをPCで処理可能に

<u>3ピークファインドアルゴリズム</u>

高分解能精密質量分析 & True signal Deconvolution の組み合わせ ⇒ 新しい次元のピーク分離

Hardware

次世代型高分解能TOFMS

"超"高分解能TOFMSの仕組み FFPテクノロジー

FFPテクノロジー

マルチターンでは、リフレクターの数が多く、 グリッドによる散乱により透過率が下がる

長大な飛行距離により生じる イオンの拡散による分解能低下

KADAS

超高分解能に伴うデータサイズの肥大化

測定モード別スペック

分解能レベル 25,000 - 40,000

マスレンジ *m/z* 10 -1500

分解能レベル 50,000 - 75,000

マスレンジ ズームされたマスレンジ 例 1 : 4 (*m/z* 100~*m/z* 400) (*m/z* 200~*m/z* 800)

Pegasus® GC-HRT

PFTBA calibration data @ High Resolution mode

			Mass				40000			
			Accuracy,	Mass Error,			35000		~~~ ``````````````````````````````````	×
Formula	Neutral Mass	Resolution	ppm	mDa	Expected M/Z	Observed M/Z	35000		×	
CF3	68.9952096	26923	0.3	0.021	68.994661	68.9946815	30000	× –		
C2F4	99.9936128	29600	-0.05	-0.105	99.9930642	99.9929595	25000 -	1		-
C2F4N	113.996687	30063	-0.31	-0.035	113.996138	113.996103	20000			
C2F5	118.992016	29926	-0.42	-0.05	118.991467	118.991417	15000			
C3F5	130.992016	31220	0.14	0.018	130.991467	130.991485	10000			
C4F9	218.985629	33977	0.38	0.084	218.98508	218.985164	10000			
C5F10N	263.987106	34806	0.24	0.063	263.986557	263.98662	5000			
C8F16N	413.977525	36864	-0.13	-0.052	413.976977	413.976925	0		1	
C9F20N	501.971138	37658	-0.19	-0.093	501.970589	501.970496		0 200	400	600

25,000 HWHM Resolving power

0

0

200

400

600

PFTBA calibration data @ Ultra High Resolution mode

				Mass				80000 -	
	Formula	Noutral Maga	Peoplution	Accuracy, N	Mass Error,	Expected M/Z	Observed M/Z	70000 -	×*
	Formula	neutral mass	Resolution	ppm	mDa	Expected M/Z	Observed W/Z	60000 -	
	C4F9	218.985629	67383	0	0	218.98508	218.98508	00000	
	C5F10N	263.987106	69071	-0.19	-0.049	263.986557	263.986508	50000 -	1
	C8F16N	413.977525	73904	0	0	413.976977	413.976977	40000 -	
	C9F20N	501.971138	74528	0	0	501.970589	501.970589	20000	
		50000 -							
								20000 -	

50,000 HWHM Resolving power

Software

構造解析へのアプローチ

精密質量による組成式算出

Nootkatone Formula : C15H22O

香料標準品分析

全ての濃度において正確な質量の 分子イオンが得られました。

質量精度確認 1.25~500 ppb

Name	Similarity	Mass Difference	Formula	Calculated Neutral Mass	Calculated Ion m/z	Charge	RDBE	Mass Accuracy [ppm]	Mass Delta [u]
	945	982	C15H22O	218.167065	218.166517	1	5	0.41368	0.00009
500 ppb	955	994	C15H22O	218.167065	218.166517	1	5	0.13866	0.00003
	933	967	C15H22O	218.167065	218.166517	1	5	0.74829	0.00016
	972	988	C15H22O	218.167065	218.166517	1	5	0.29451	0.00006
50 ppb	962	988	C15H22O	218.167065	218.166517	1	5	-0.27387	-0.00006
	962	993	C15H22O	218.167065	218.166517	1	5	0.157	0.00003
	877	993	C15H22O	218.167065	218.166517	1	5	0.156	0.00003
5 ppb	615	996	C15H22O	218.167065	218.166517	1	5	-0.08594	-0.00002
	674	993	C15H22O	218.167065	218.166517	1	5	0.157	0.00003
	718	993	C15H22O	218.167065	218.166517	1	5	0.0149	0
2.5 ppb	832	980	C15H22O	218.167065	218.166517	1	5	-0.45721	-0.0001
	718	993	C15H22O	218.167065	218.166517	1	5	0.0148	0
4.05	718	977	C15H22O	218.167065	218.166517	1	5	0.53286	0.00012
1.25 ppb	717	960	C15H22O	218.167065	218.166517	1	5	0.9133	0.0002
444	710	939	C15H22O	218.167065	218.166517	1	5	1.39	0.0003

ave.	濃度	500 ppb	50 ppb	5 ppb	2.5 ppb	1.25 ppb
	質量精度 ppm	0.43	0.24	0.13	0.31	0.95

		Mass	Expected	Expected Ion	Observed Ion		Mass Accuracy	Mass Delta
Hit	Formula	Difference	Neutral Mass	m/z	m/z	RDBE	(ppm)	(m/z)
1	C42H63O3P	999	646.4515	646.4509	646.4509	12	0.0094	6.07E-06
2	C32H62N4O9	962	646.4517	646.4511	646.4509	4	-0.2955	-0.00019
3	C38H66NO3P2	939	646.4518	646.4512	646.4509	7.5	-0.4713	-0.0003
4	C34H69N2O3P3	877	646.4521	646.4516	646.4509	3	-0.952	-0.00062
5	C32H67N5O2P3	855	646.4508	646.4502	646.4509	3.5	1.125	0.000727

		Mass	Expected	Expected Ion	Observed Ion		Mass Accuracy	Mass Delta
Hit	Formula	Difference	Neutral Mass	m/z	m/z	RDBE	(ppm)	<u>(m/z)</u>
1_	C28H42O2P	1000	441.2922	441.2917	441.2917	8.5	-0.0001	-4 <u>E</u> -08
2	C18H41N4O8	961	441.2924	441.2919	441.2917	0.5	-0.4467	-0.0002
3	C24H45NO2P2	938	441.2926	441.292	441.2917	4	-0.7042	-0.00031
4	C18H46N5OP3	856	441.2915	441.291	441.2917	0	1.6342	0.000721
5	C22H43N4OP2	794	441.2912	441.2907	441.2917	4.5	2.3384	0.001032

TOFMSで磁場型MSに求められた分解能要求事項をクリア

0.095

0.032

0.036

0.101

0.033

0.035

abundances.

Meeting the Challenges of EPA 1613b Using Gas Chromatography with High Resolution Time-of-Flight Mass Spectrometry

Figure 2. Mass Spectrum from the analysis of TCDF (m/z = 303.9016 and 305.8987) in high resolution mode. Shows the M and M+2 isotopes and has calculated resolutions of 10784 and 10576 (10% valley).

PCDF C12H8-(m+n)OCI(m+n)

PCDD C12H8-(m+n)O2CI(m+n)

good correlation between calculated and observed relative isotopic

1.80

CSS (200 - 2000)

Figure 6. Calibration curves (CS1-CS5) for 2,3,7,8-TCDF (Top) and 2,3,7,8-TCDD (Bottom).

EI

精密質量によるターゲット分析

同位体存在比

<u>ダイオキシン分析</u>

		%
MASS	observed	calculated
455.74046	9.9	9.5
456.74398	1.2	1.2
457.73752	25.1	24.4
458.74065	3.2	3.2
459.73461	27.4	27.5
460.73788	3.6	3.6
461.73170	17.6	17.7
462.73504	2.2	2.3
463.72883	7.0	7.2
464.73210	0.9	0.9
465.72614	1.8	1.9

CI New Option

<u>糖尿病の血糖値マーカー探索</u>

CONFIRM your Library hit with Accurate Mass Formula Generation

Cl New Option 精密質量による組成式算出

ΕI

精密質量による組成式算出

Compound	Formula	Species	Expected lon m/z	observed lon m/z	Mass Accuracy (ppm)	
D4	C8H24O4Si4	Н	297.08244	297.08219	-0.86	
D5	C10H30O5Si5	Н	371.10123	371.10109	-0.37	
D6	C12H36O6Si6	NH4	462.14657	462.14607	-1.08	
D7	C14H42O7Si7	NH4	536.16536	536.16526	-0.19	Only FL
BHT	C15H22O	Н	219.17434	219.17438	0.15	
Dilactone	C10H16O4	Н	201.11214	201.11214	0.01	tasy
		NH4	218.13868	218.13863	-0.27	
D8	C16H48O8Si8	NH4	610.18416	610.18423	0.12	
D9	C18H54O9Si9	NH4	684.20295	684.20293	-0.03	
D10	C20H60O10Si10	NH4	758.22174	758.22170	-0.05	
D11	C22H66O11Si11	NH4	832.24053	832.24025	-0.34	
Diisocyanate	C15H10N2O2	Н	251.08150	251.08131	-0.78	
D12	C24H72O12Si12	NH4	906.25932	906.25910	-0.25	
D13	C26H78O13Si13	NH4	980.27811	980.27941	1.32	EL+CL
D14	C28H84O14Si14	NH4	1054.29690	1054.29750	0.56	
D15	C30H90O15Si15	NH4	1128.31570	1128.31558	-0.11	Better
D16	C32H96O16Si16	NH4	1202.33449	1202.33514	0.55	
D17	C34H102O17Si17	NH4	1276.35328	1276.35264	-0.50	
Tetralactone	C20H32O8	Н	401.21699	401.21690	-0.24	
I		NH4	418 24354	418 24322	-0.78	

Pegasus GCxGC HRT Coming Soon...

Thank you for your attention

Contact LECO Japan at:

〒105-0014 東京都港区芝2-13-4 住友不動産芝ビル4号館 *Phone: 03-6891-5800, JAX: 03-6891-5801*

Emaíl: fumíe_kabashíma@leco.co.jp www.leco.co.jp