

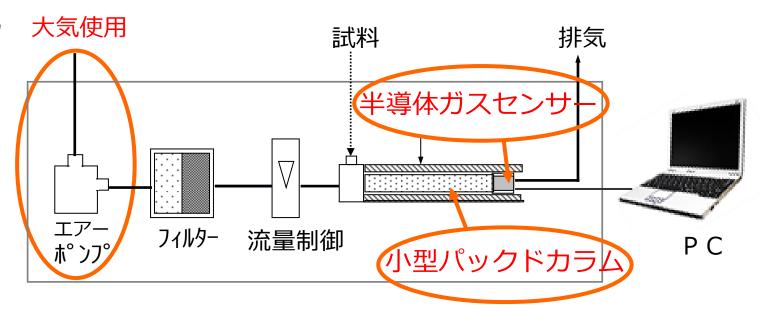
センサーガスクロによる硫黄化合物 の高感度分析

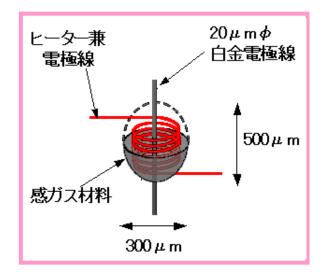
2016/3/4 日本写真印刷株式会社 FIS株式会社

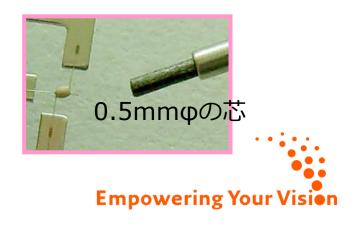
内容

- センサーガスクロ(SGC)の概要(構造、検出器、周辺機器)
- 歯科医用口臭測定器の概要(呼気中硫黄化合物分析器)
- 微量H₂Sの検出(水素中の硫黄化合物分析--検討中)

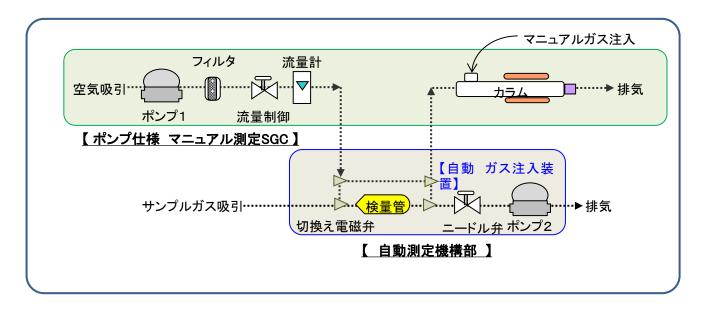
SGCの特徴(基本コンセプト)

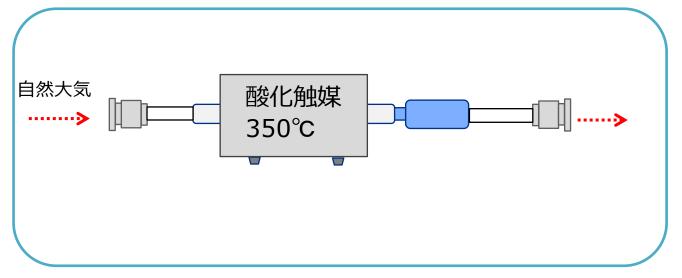

- 微少試料で高感度に計測
 - ・試料 1~5cc
 - ・ppbオーダーから計測可能
- 検知対象ガスを特定(用途限定)
 - ・特定ガス成分を分析
- 簡単操作・短時間計測
 - ・測定時間 4分または8分
 - ・試料注入で自動測定
 - ・自動解析
- キャリアガス用高圧ボンベ不要
 - ・大気を浄化して使用
 - ・小型 軽量 ポータブル


センサーガスクロマトグラフ(SGC) の基本構成



■構成


■ガスセンサー素子構造



高機能化オプション

検量管式 微量成分 自動注入 装置

触媒式 キャリアガス 浄化装置

市販SGC7機種

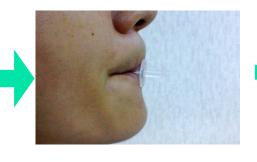
仕様

				C C Ob					
商品名				Sensor Gas Chromatograph	n T	T	Γ		
型式	ODSA-P2-A	ODNA-P2-A	ODNA-P2-B	SGHA-P2-A	SGHA-P2-B	SGEA-P2-A	SGVA-P2-A		
測定方式				ガスクロマトグラフィー					
検出器	金属酸化物半導体ガスセンサー								
	硫化水素:2~1000 ppb	アンモニア: 10~10000 ppb	トリメチルアミン: 10~10000ppb	水素:10~10000 ppb	水素:1000~100000 ppb	アセトアルテ [*] ヒト [*] :5~10000 ppb	トルエン: 5~1000 ppb		
測定対象ガス	メチルメルカフ [°] タン:5~1000 ppb		アンモニア: 100~10000ppb	CO:10~10000 ppb	CO:1000~100000 ppb	エタノール: 100~100000 ppb	エチルヘ"ンセ"ン:5~1000 ppb		
	硫化ジメチル:5~1000 ppb					アセトン: 20~50000 ppb	m-キシレン		
測定濃度域						イソプ・レン: 10~10000 ppb	pーキシレン:5~1000 ppb		
							O−キシレン: 5~1000 ppb		
							スチレン: 5~1000 ppb		
分析用途例	環境悪臭、呼気、付臭剤、ペット 臭、腐敗臭、脱臭効果 等		、工場内環境、トイレ臭、 ^{兑臭効果} 等		・ 中の不純物、大気、 細胞中水素 等 呼気、室内・工場内環境、各種部材,の品質質		各種部材,の品質管理 等		
キャリアガス			净化	大気			高純度ボンベエアー		
オプション設定① (空気浄化装置)		0		標準装備	×				
オプション設定② (自動サンプリング装置)	0								
最小表示分解能	0.1 ppb								
試料ガス導入方式	シリンジによる手動注入								
測定時間	4 3	分	8 分	4	分 8分		分		
試料ガス注入量		2	cc	•	1 cc	5 cc			
初期安定化時間				5~60分					
外形寸法(突起部含まず)	W260 × H135 × D340 mm				W260 × H135 × D435 mm				
重量(本体のみ)			5.5 kg			6.5 kg	6.0 kg		

ODSAの検知可能な硫化物一覧

機種		ガス名	検知下限濃度	条件変更
ODSA	検知対象ガス	硫化水素	2 ppb	不要
		メチルメルカプタン(メタンチオール)	5 ppb	不要
		硫化ジメチル(DMS)	5 ppb	不要
	検出可能ガス	イソプレン	1 ppb	不要
		エタンチオール(エチルメルカプタン)	5 ppb	不要
		tert-ブチルメルカプタン(TBM)	5 ppb	不要
		アリルメルカプタン	10 ppb	要
		アリルメチルスルフィド	10 ppb	要
		テトラヒドロチオフェン(THT)	50 ppb	要
		二硫化ジメチル(DMDS)	50 ppb	要
		二酸化イオウ	100 ppb	不要
		二硫化炭素	-	_
		硫化カルボニル	-	_

1.呼気中硫黄化合物分析器オーラルクロマ(歯科用)



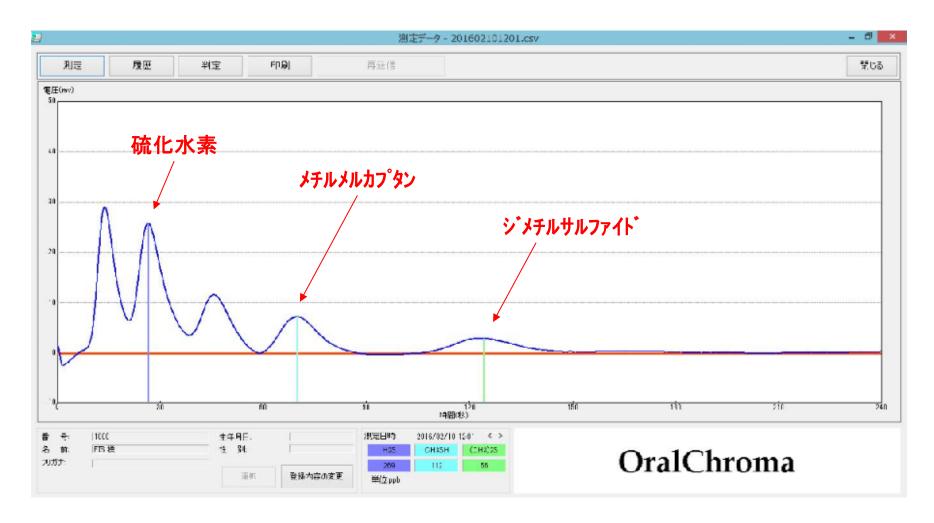
測定手順(サンプリング)

30秒~1分間、口腔 ガスを溜める(鼻呼吸)

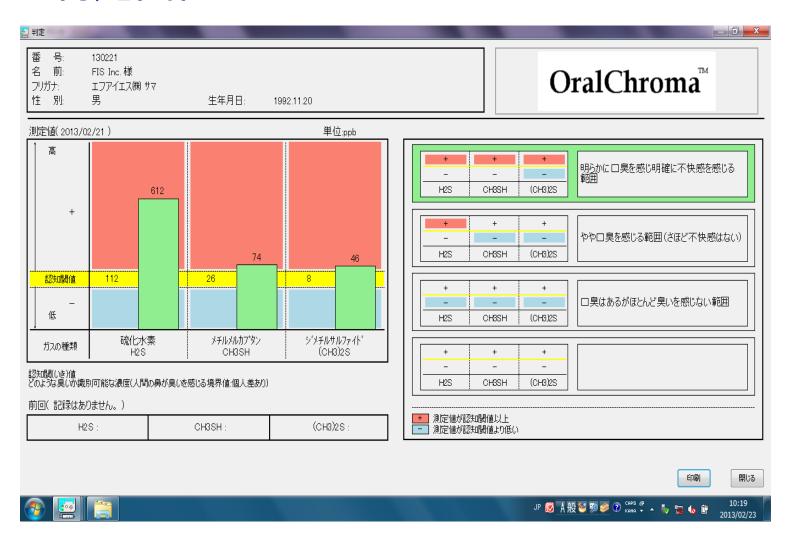
前歯でシリンジを固定

ロ唇をしっかり閉じる (空気を吸い込まないよう注意)

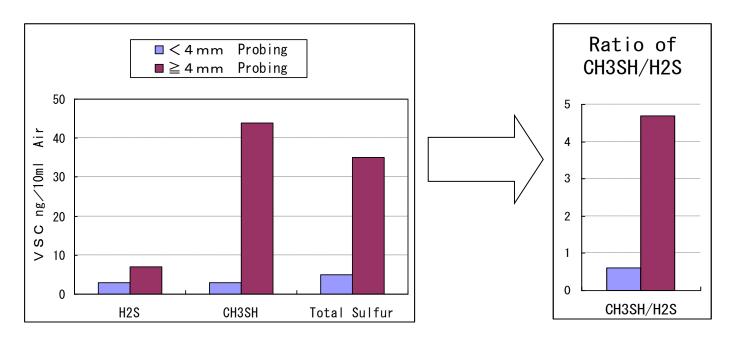
OralChromaに注入後、 自動測定開始 (4分間)


先端を拭きとり、 1mlに調整

プランジャーをゆっくり 一度引いて、再度押し戻 し、もう一度引いてから、 口から離す

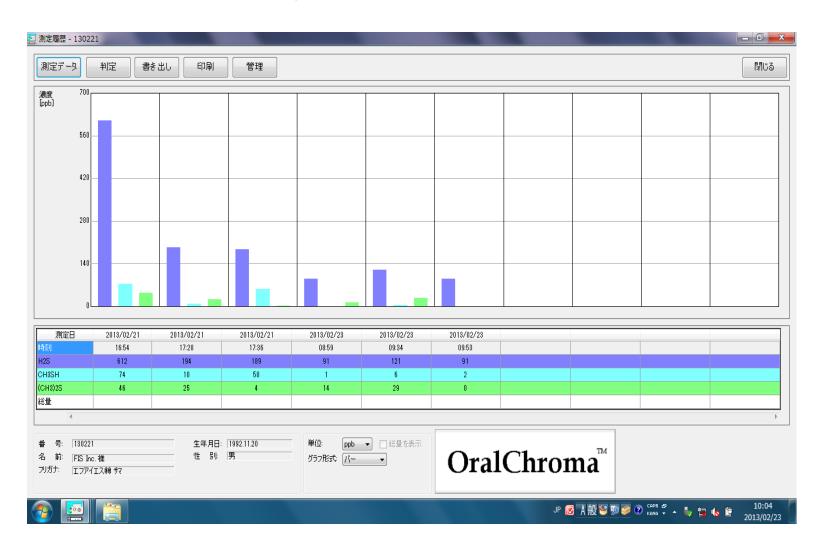

測定画面

判定画面



三成分ガスを分離できることの有意性

歯周ポケット4ミリ(中等度以上の疾患を示す指標)点を境界としたガス濃度との関連


<メチルメルカプタン(CH3SH)が歯周病特有の濃度分布(比)を示す文献より抜粋引用>

※歯周ポケット4ミリ以上の患者は、それ未満の患者よりも特にメチルメルカプタン濃度が高い。(44ng対2.6ng) ※メチルメルカプタン/硫化水素比も、同様の結果である。(4.64:0.58)

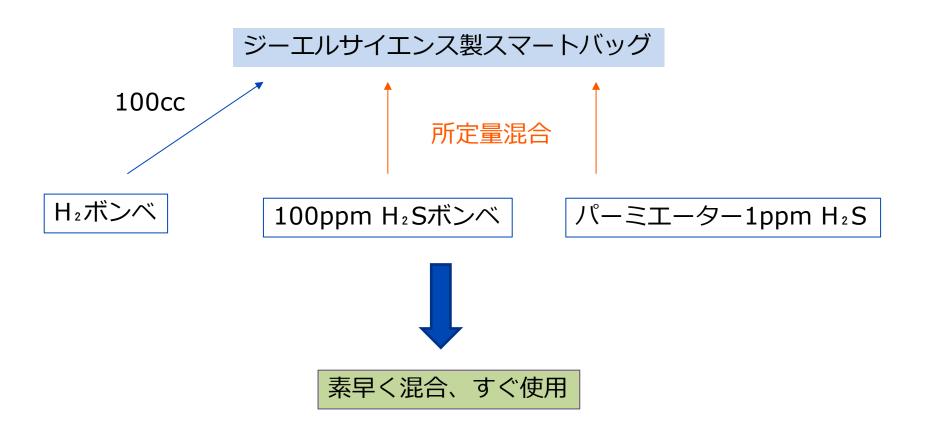
患者様の履歴

呼気中硫黄化合物分析器の特性まとめ

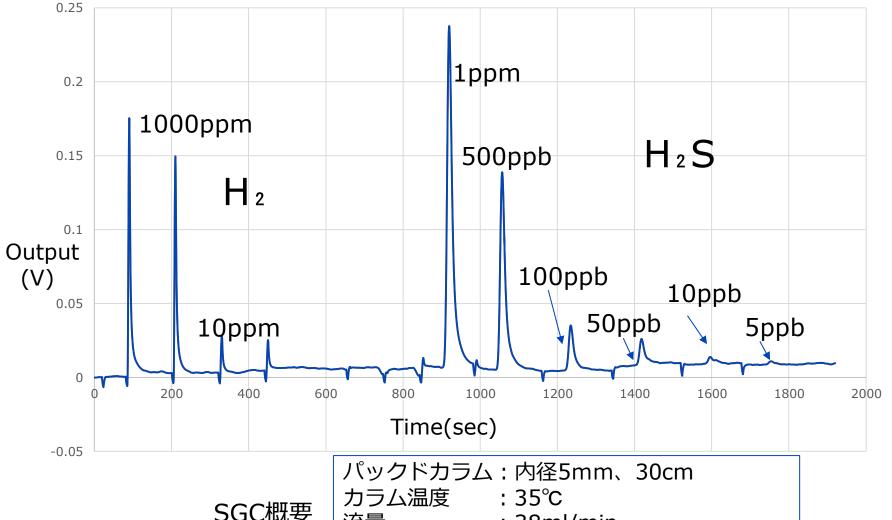
- 簡単な操作で呼気中硫化物の濃度が成分ごとに測定できる
- 硫化物濃度より口臭の有無を表示できる
- 歯周病等の疾病の程度が分かる
- 治療効果を示すことができる

2.H₂ガス中の硫化水素の微量分析

表 1 ISO14687-2FCV 用水素燃料規格の変遷 2), 5), 8)


表 1 ISO14687-2FCV 用水素燃料規格の変遷 ******					
	ISO14687-2	ISO/TS14687-2	ISO14687		
仕 様	2012 年	2008 年	1999 年		
1I 18	6 . 6	0 1 0	Type I,		
	Grade D	Grade D	Grade A		
純度	99.97 %	99.99 %	98 %		
全炭化	2	2	100 ppm		
水素	2 ppm	2 ppm			
H₂O	5 ppm	5 ppm			
O ₂	5 ppm	5 ppm	合わせて		
He	300 ppm	100 ppm	1,900 ppm		
Ar, N ₂	100 ppm	100 ppm			
CO ₂	2 ppm	2 ppm			
CO	0.2 ppm	0.2 ppm	1 ppm		
S	0.004 ppm	0.004 ppm	2 ppm		
HCHO	0.01 ppm	0.01 ppm			
HCOOH	0.2 ppm	0.2 ppm			
NH ₃	0.1 ppm	0.1 ppm			
ハロゲン化	0.05 ppm	0.05 ppm			
物	o.oo ppm	u.us ppm			
粒子	1 mg/kg	1 μg/L	問題なき		
411		(10 µm 以下)	こと		

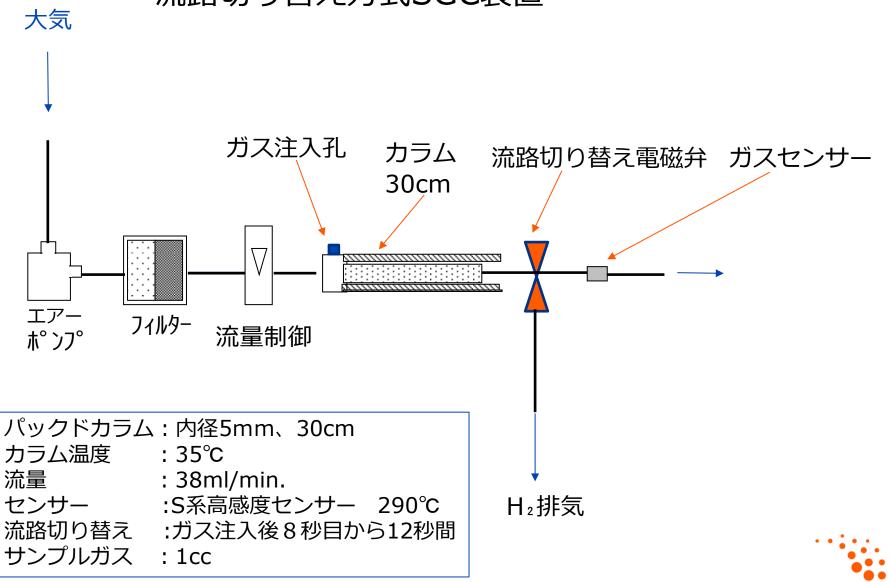
JARI Research Journal 20130806


ガス調整

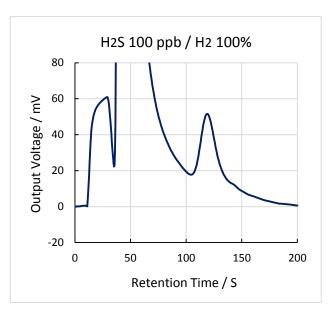
H₂、H₂Sの濃度特性(大気中)

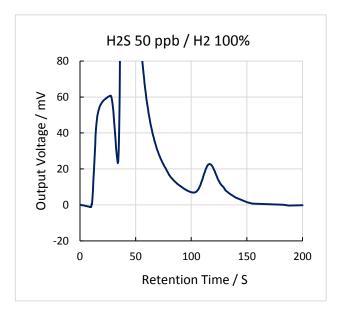
SGC概要

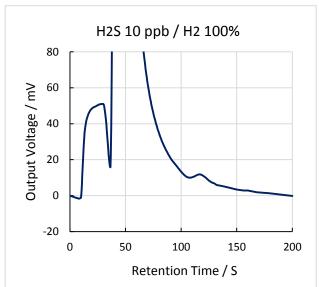
流量 : 38ml/min.

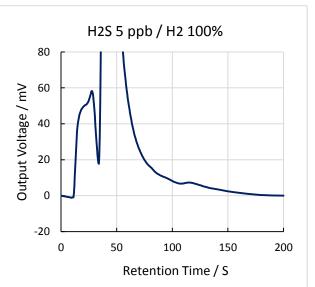

センサー : S系高感度センサー 290°C

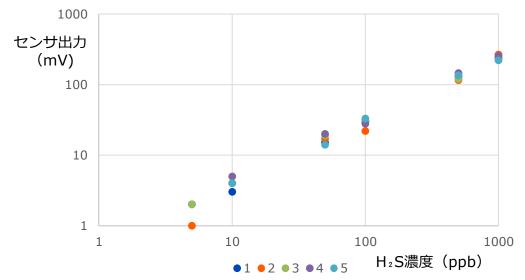
サンプルガス : 1cc


Empowering Your Vision


流路切り替え方式SGC装置




流路切り替え方式によるH2S濃度特性



流路切り替え方式H2S測定結果

センサ出力(mV)

H₂S濃度 (ppb)	1	2	3	4	5
1000	265	230	256	240	220
500	130	116	120	145	135
100	31	30	22	28	33
50	15	17	19	20	14
10	3	4	4	2	4
5	2	_	1	2	_

H2中硫黄化合物分析器の特性まとめ

- 流路切り替え方式のSGC装置はH2中微量H2Sの分析に使用できる
- センサー種、動作条件、カラム条件等の検討で精度、感度改善が期待できる
- H₂中CO,NH₃等の微量成分分析の可能性がある

