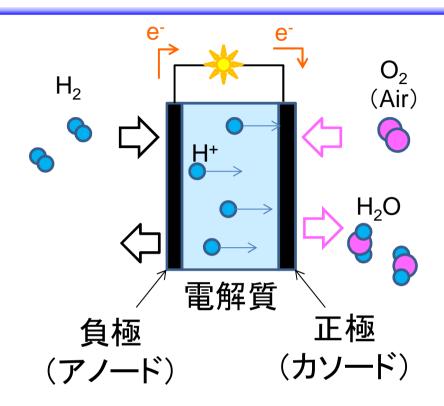


固体高分子形燃料電池における 水素中不純物(CO、H₂Sなど)の影響

2016年3月4日 (一財)日本自動車研究所 松田佳之

- 1. 背景および目的
- 2. 水素燃料中の硫黄化合物による 燃料電池の性能低下機構解析
- 3. 水素燃料中のCOによる 燃料電池の性能低下機構解析

- ・人口増大・エネルギー消費の増加・経済発展 CO₂などの温室効果ガス削減(1997年、京都議定書)
- •日本の運輸部門におけるCO₂発生割合は、排出量全体の17%(2012年)¹⁾



CO。削減への取り組み

- •自動車の燃費改善
- ・次世代自動車の開発・普及 (電気自動車、燃料電池自動車など)
- 燃料電池自動車(FCV)-2014年12月に市販開始
- 水素ステーション
 - -大都市圏を中心に順次 設置がすすめられている

1) 国立環境研究所、日本国温室効果ガスインベントリ報告書(2014)

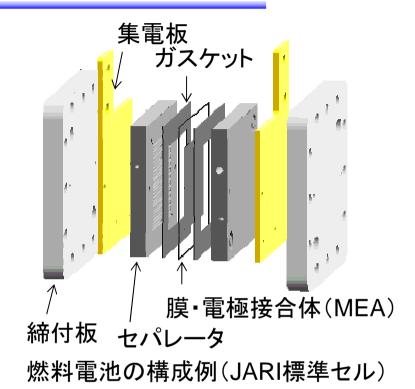
燃料電池での反応

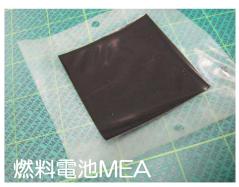
アノード: $H_2 \rightarrow 2H^+ + 2e^-$

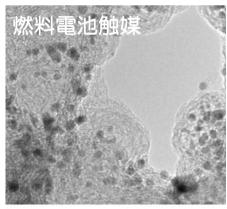
カソード: $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$

全反応 : $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

<特徴>


- ・燃料を供給しながら電気を生成する 発電デバイス(一次・二次電池と異なり、 電気を貯めるものではない)
- ・低温でも高効率
- ・作動中の環境負荷が少ない $(CO_2$ 、NOxなどを排出しない)

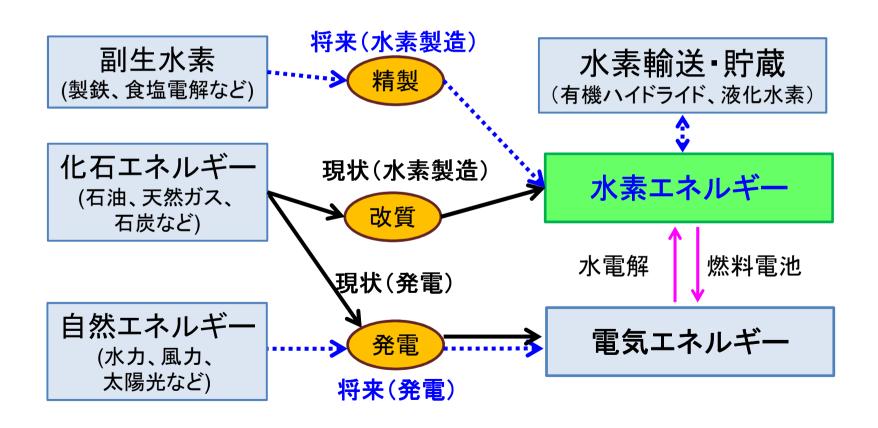

<歴史>


- 英国のW. Grove卿が1839年に燃料 電池の実験に成功
- 1950年頃~宇宙用として開発(アルカリ形)
- 1980年代~定置用 · 移動用電源として日米欧など各国で積極的な開発

燃料 電池の 種類	固体酸化 物形 (SOFC)	溶融炭酸 塩形 (MCFC)	リン酸形燃 料電池 (PAFC)	固体高分 子形 (PEFC)	直接メタ ノール形 (DMFC)	アルカリ形 (AFC)
運転温 度 / °C	700 ~ 1000	600~700	160~210	~100	~80	~240
負極燃 料/正極 酸化剤	H ₂ ,CO / 空気	H ₂ ,CO / 空気	H ₂ / 空気	H ₂ / 空気	メタノール / 空気	H ₂ / O ₂ (CO ₂ 不含)
電解質	ZrO ₂ (Y ₂ O ₃)など	Li/K, Li/Na 炭酸塩	H ₃ PO ₄ 水溶液	プロトン 交換膜	プロトン 交換膜	KOH 水溶液
電荷 担体	O ²⁻	CO ₃ ²⁻	H+	H+	H+	OH-
主な電 極触媒	Ni, LaNiOx	Ni, NiO	Pt/C	Pt/C	Pt/C	Ni
主な 用途	家庭用~ 大規模 発電用	分散電源 (中規模)	分散電源 (中規模)	自動車、家庭用	携帯用	宇宙用

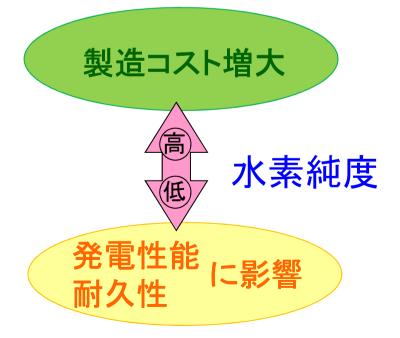
- •電解質にプロトン交換膜(数10 µm)を 用いる
- ·室温~100°C程度の低温で動作可能
- ・現状では白金系触媒を用いる(コスト高)
- •自動車用、定置用として開発・市販化




●2010年3月に燃料電池実用化推進協議会(FCCJ)から発表¹⁾

※前提条件:FCVユーザーのメリット(価格・利便性等)が確保されて、順調に普及が進んだ場合

1) 燃料電池実用化推進協議会(FCCJ) Web: http://fccj.jp/pdf/22_csj.pdf


現状の水素製造は、化石エネルギーの水蒸気改質による方法が主 (将来はCO₂を排出しない自然エネルギー由来の水素製造が期待)

<u>-2012年に燃料電池自動車用水素の</u> 品質規格が発行

(燃料電池などへの影響/水素循環系における濃縮/分析技術などを考慮)

・2015年~燃料電池の低コスト化(白金量低減、高出力密度化)や、新規水素供給技術を見据えた品質規格見直し開始(2018年の規格化を目指す)

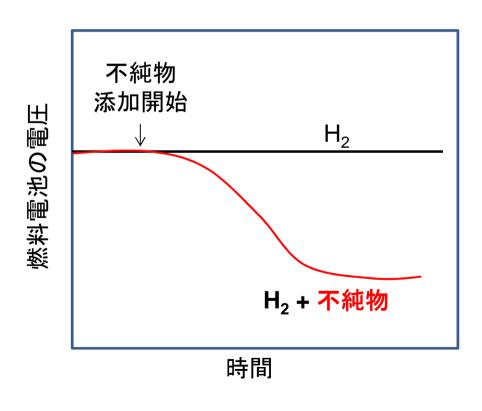
FCV用水素規格(ISO 14687-2), 2012年12月発行

Characteristics	Type I, Type II Grade D
Hydrogen fuel index (minimum mole fraction)	99.97%
Total non-hydrogen gases	300 µmol/mol
Maximum concentration of individu (µmol/mol)	ual contaminants
Water (H ₂ O)	5
Total hydrocarbons (Methane basis)	2
Oxygen (O ₂)	5
Helium (He)	300
Total Nitrogen (N ₂) and Argon (Ar)	100
Carbon dioxide (CO ₂)	2
Carbon monoxide (CO)	0.2
Total sulfur compounds (H ₂ S basis)	0.004
Formaldehyde (HCHO)	0.01
Formic acid (HCOOH)	0.2
Ammonia (NH ₃)	0.1
Total haloganated compounds (Halogenate Ion basis)	0.05
Maximum particles concentration	1 mg/kg

水素ステーションにおける不純物測定例1)

表 1.1.1.3-3	製品水素分	析結果	(2008 年	F 12月))
-------------	-------	-----	---------	--------	---

	分析值 ¹⁾ (単位:vol.ppm)						175755555 epi		
分析対象物質	灯油 脱硫ガ	横浜·大黒	大黒 川崎 ソリン メタノール	千住 都市ガス 改質	セントレア 都市ガス 改質	大阪 都市ガス 改質	相模原 ⁶⁾ アルカリ 水電解	検出下限 濃度	分析方法(概略)
2711/2551254		脱硫ガソリン 改置							
一酸化炭素	0.06	<0.01	< 0.01	0.01	0.05	0.16	S 19 .7	0.01	GC-FID
二酸化炭素	< 0.01	<0.01	<0.01	<0.01	0.02	0.35	g 8 4 3	0.01	GC-MS
全炭化水素2) :メタン	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.19		0.05	GC-FID
:非メタン	0.13	< 0.05	< 0.05	< 0.05	< 0.05	0.40	() () ()	0.05	OC-FID
ベンゼン	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.006	(S 	0.005	GC-MS
硫黄化合物	< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	12-73	0.0001	IC
メタノール	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	ý 7 <u>2</u> 4	0.01	GC-MS
ホルムアルデヒド	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	(-)	0.01	DNPH/HPLC
アセトアルデヒド	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	3 4 3	0.01	DNPH/HPLC
ギ酸	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	3 + 3	0.01	IC
アセトン	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	1951	0.01	DNPH/HPLC
アンモニア	< 0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	0 727	0.001	IC
水分	< 0.5	3.4	<0.5	<0.5	< 0.5	0.74	(-	0.5	露点計
酸素	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	() () () () () () () () () ()	0.01	微量酸素計
アルゴン	< 0.03	1.13	< 0.03	1.34	0.39	0.54	i s a c	0.03	GC-MS
窒 素	0.04	24.6 4)	0.32	6.91	10.9	2.05	26.9 40	0.03	GC-MS
ヘリウム	⟨3	<3	⟨3	<3	⟨3	<3		3	GC-TCD
ハロゲン化合物 [®] :F	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	() s a t	0.05	IC
:Cl¯	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	-	0.05	IC
:Br	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05) s u s	0.05	IC


- 1) 濃度は全て体積換算とした。
- 2)全ての炭化水素濃度を炭素数1の化合物換算で合計して定量した。
- 3)全ての硫黄化合物をSO42換算で合計して定量した。
- 4) 高濃度のため、GC-MSでの定量が困難であり、GC-TCDにて定量した。
- 5) それぞれF、CI、Br 濃度として定量した。
- 6) 窒素のみの分析。

- -COの検出結果が規格値(0.2ppm)と

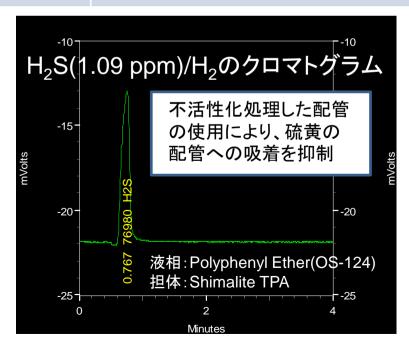
 近いケースがある
- 硫黄化合物は検出下限以下

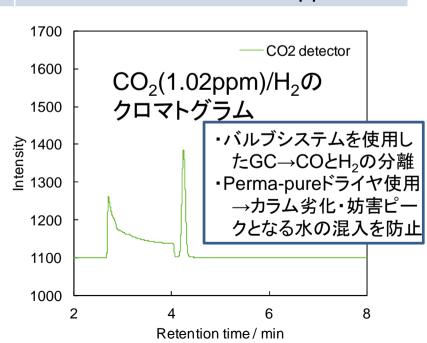
燃料電池への影響が大きい物質(硫黄、CO) による性能低下機構解析

⇒そのためには発電中の排出成分(ガス)を リアルタイムで測定することが重要

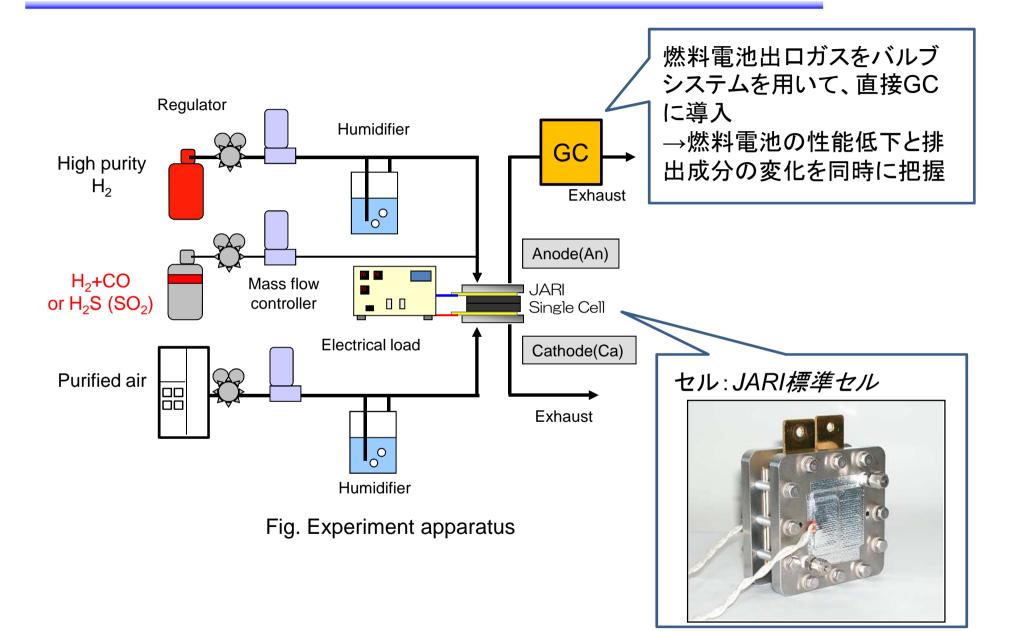
燃料極 電解質膜 空気極 CO, Sなど ガス分析 ガス分析により ・燃料電池内での反応 ・Ptへの不純物の吸着挙動 を電圧変化とともに把握することが可能

ガス分析に必要な条件:

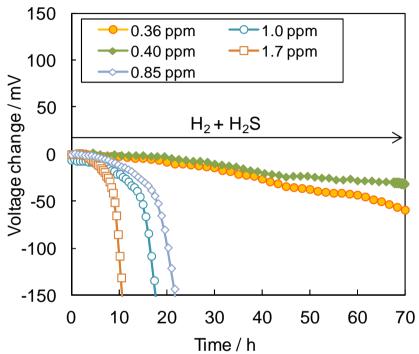

- •少ないガス流量(~100 mL min⁻¹)
- 低濃度(ISO14687-2で規定される程度)
- -水分を多く含む(~100%RH)
- ・連続分析(数分間隔の分析を、数十時間 →オンラインでの測定が必要)


各種ガス分析装置の比較

	濃度範囲	必要なガス量	妨害成分
ガスクロマトグ	O(ppbレベルも	〇(少ない)	△~O(水の干渉、
ラフ(GC)	可能)		カラム劣化)
四重極型質量	×(定量下限は~	〇(少ない)	×(COがN ₂ の
分析計(Q-MS)	数10 ppm程度)		ピークと重なる)
赤外分光(ND-IR、FT-IRなど)	△(ppm程度)	×(1L min ⁻¹ 程度必要)	×(水の干渉)


⇒GCを 本研究 に適用

成分	H ₂ S, SO ₂	СО
検出器	FPD (<u>Flame Photometric</u> <u>Detector</u>)	PDHID (<u>Pulse Discharged</u> <u>Helium Ion Detector</u>)
原理	硫黄を含む試料を水素中で燃焼させたときの発光を、光電子増倍管で測定	励起させたHeが基底状態に戻る際 に発生する光エネルギーを利用し、 対象成分をイオン化して検出
選定理由	硫黄成分を選択的に感度よく、安定 して測定可能	TCDやFIDに比べてCO、CO ₂ が低 濃度まで測定可能(~数10ppb)



- 1. 背景および目的
- 2. 水素燃料中の硫黄化合物による 燃料電池の性能低下機構解析
- 3. 水素燃料中のCOによる 燃料電池の性能低下機構解析

横軸=濃度

横軸=H2S供給量

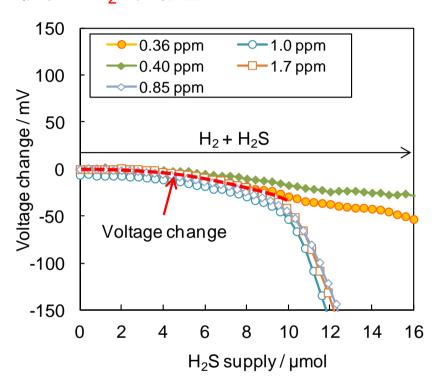
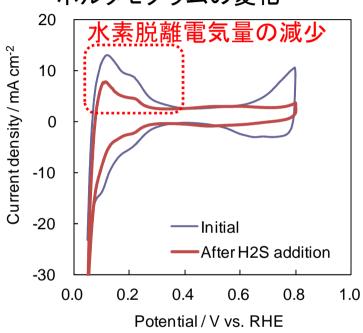



Fig. Voltage change by H_2S at $T_{cell} = 80^{\circ}C$, 1 A cm⁻² and anode platinum loading of 0.4 mg cm⁻².¹⁾

電圧低下初期のH₂Sの影響は供給量で整理できる(蓄積型)

アノードにおけるサイクリック ボルタモグラムの変化 '0

H₂S添加前後における水素 脱離電気量の変化

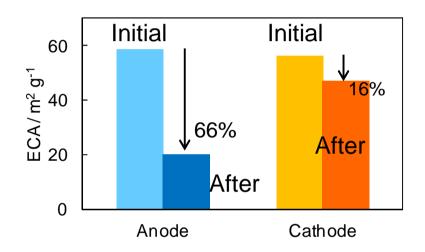


Fig. Change of the electrochemically active surface area (ECA) before and after the H₂S (0.85 ppm, 25 h) test.

硫黄はアノードだけでなく、電解質膜を透過 してカソードにも影響する可能性あり

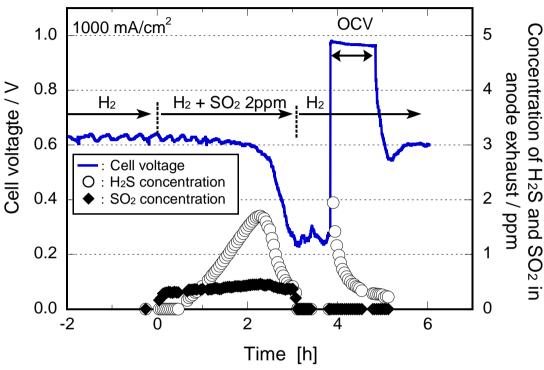
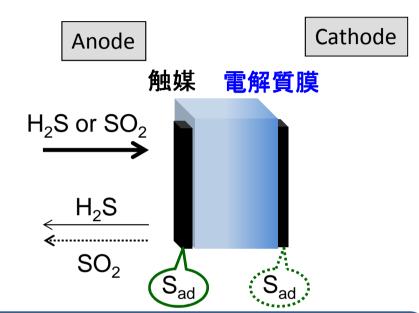


Fig. Effect of SO₂ (2 ppm) on PEFC performance at 80°C, 1000mA cm⁻² and 0.3 / 0.3 mg-Pt cm⁻².


- ・アノード出口でSO₂に加え、H₂Sも検出 初期のH₂S濃度は徐々に増加
- ・急激な電圧低下の後に、H₂S, SO₂濃度が減少
- ・OCVでH₂Sが脱離し、セル電圧が回復

H₂S adsorption / desorption¹⁾

Pt + $H_2S \Leftrightarrow Pt-S + 2H^+ + 2e^-$ Pt-S + $H_2S \Leftrightarrow Pt-S_2 + 2H^+ + 2e^-$

SO₂ adsorption / desorption²⁾

Pt + SO₂ + 2H⁺ + 2e⁻
$$\Leftrightarrow$$
 Pt-SO + H₂O
Pt-SO + 2H⁺ + 2e⁻ \Leftrightarrow Pt-S + H₂O

- ・硫黄成分は主にアノード触媒上に吸着・蓄積(水素酸化反応の阻害)
- ・SO。は一部がH。Sに還元され、アノードから排出される
- ・硫黄成分はカソードにも移動し、Pt上に被毒した可能性あり
- ・カソードが硫黄被毒したとき、アイオノマーの劣化が引き起こされる可能性あり3)
- ・自動車用燃料電池システムを想定した水素循環系では、電圧低下が見られるまでは濃縮しない(ただし急激な電圧低下後は濃縮)
- 1) R. Mohtadi et al., *Electrochem. Solid-State Lett.*, **6**(12), A272-A274 (2003)
- 2) A. Contractor, L. Hira, *Electroanal. Chem.* **93**, 99(1978)
- 3) D. Imamura, E. Yamaguchi, ECS Trans., 25(1) 813-819(2009).

- 1. 背景および目的
- 2. 水素燃料中の硫黄化合物による 燃料電池の性能低下機構解析
- 3. 水素燃料中のCOによる 燃料電池の性能低下機構解析

- ✓COは燃料電池の発電性能を低下 させる
- ✓白金担持量(とくにアノード)が低減 され、かつ運転温度が低いとき、電 圧への影響が大きい
- ✓水素ステーションにおいてCO濃度 の実測値が規格値と近い¹)

COが規格値の濃度 (0.2 ppm)で影響を調査

セル温度60°Cかつ低Pt担持量では、電圧低下量が大きい

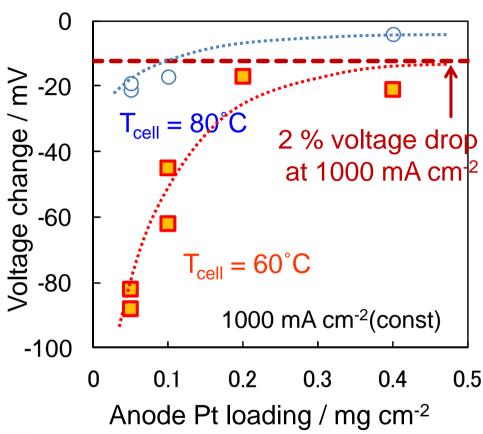


Fig. Relationship between anode platinum loading and voltage change by CO(0.2 ppm).

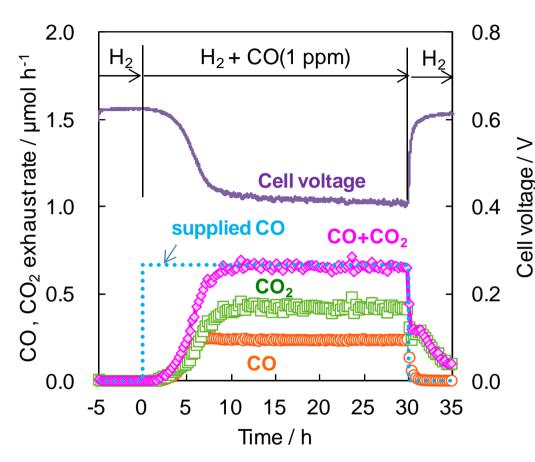


Fig. CO and CO₂ concentration at the anode outlet during the CO(1 ppm) exposure test.

CO添加中(0~30 h):

- 約2 hから電圧が低下するとともに、アノード出口のCO、CO₂排出速度が上昇
- •10 hに電圧がほぼ一定。 また、CO供給速度と、 CO+CO₂排出速度が一致

H₂へ切替後(30 h~):

- ・電圧はほぼ回復
- ・CO排出速度は0となる
- CO₂排出速度はなだらかに 低下

- ・硫黄化合物の燃料電池アノードにおける吸着・反応を調査
 - ⇒H₂S、SO₂はアノードへの吸着による影響が大きい 一部はカソードにも移動し、吸着する可能性あり
- •COの燃料電池における吸着•反応を調査
 - ⇒アノードへの吸着による影響が大きい セル温度60°CではCOが低濃度(0.2 ppm)でも、 CO吸着量が増大
- ・ガスクロマトグラフによる出口ガス分析は燃料電池における不 純物の挙動を把握するために有効なツール
- •今後の課題:より低濃度での硫黄成分測定
 - -低白金量でかつ低濃度(ppbレベル)、数10時間での測定
 - -検出器の感度向上と、安定性を両立させることが必要
- 謝辞 本研究は、NEDO(新エネルギー・産業技術総合開発機構)の支援により行われました。 関係各位に深く感謝いたします。