
GC,GC/MSによる代謝産物の一斉分析 ~定量に向けた情報共有~

ジーエルサイエンス株式会社 宮川 浩美

はじめに

見積もれる系統誤差は同じ組成のサンプル(QC)を 一定間隔で測定することで補正されるが, 何が起こっているのかを知っておくことが重要である

本日の内容

- 誘導体化の問題 ~官能基によりTMS化のされやすさは異なる~
- イオン化室におけるマトリックス効果 ~酵母と血清サンプルを例に~
- 代謝物質の容器と保管の問題

GC, GC/MS代謝物分析のための誘導体化 ~誘導体化の準備と誘導体化方法~

メトキシム化とTMS化後の化合物は、ライブラリが充実している

PRIMO Platform for RIKEN Metabolomics

AIoutput software

Objective

GC/MS is one of the most popular platforms for comprehensive analysis of metabolites in living organisms. The crucial process is to construct an organized two-dimensional data matrix containing compound names and their quantitative values. Because this process is the most complicated and knowledge intensive task in GC/MS-based metabolomics, it is essential to develop a tool for accurate, automatic data processing. We used the MetAlign (Lommen, 2009) data pre-processing tool. Aloutput can perform the peak identification, prediction, and data integration from the result exported from MetAlign and user defined retention time and spectra library. Aloutput is a non-targeted and targeted analysis tool for GC/MS based metabolomics written in visual basic for application (VBA, excel macro) available in Microsoft Excel Windows versions 2007 and later.

Please cite

- Tsugawa et al (2011) GC/MS based metabolomics: dvelopment of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA) BMC Bioinformatics 12: 131

O

メトキシム化とTMS化をうけた代謝物の保持指標とマススペクトルが収録されたライブラリと、そのライブラリを使用してピーク同定を自動で行うことができ多変量解析までをサポートしているソフトウェアAloutputがフリーで公開された (http://prime.psc.riken.jp/Metabolomics Software/Aloutput/index.)

NISTの質量スペクトルデータベースにおいてメトキシ化とTMS化された成分の収録数が増加、研究者がマススペクトルを共有することを目的としたデータベース MassBank(http://www.massbank.jp/)に基礎代謝、二次代謝物質の登録数が増えている

GC, GC/MS代謝物分析のための誘導体化 ~誘導体化の準備と誘導体化方法~

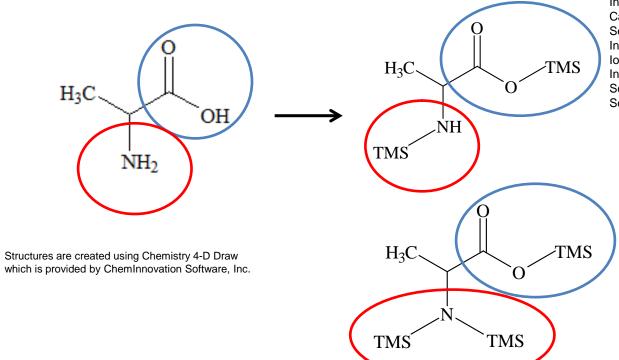
GC, GC/MSでの測定

しっかり乾燥させる 濃縮遠心(2時間)と凍結乾燥(一晩) ※後ほど行うTMS化反応は水の影響を大きく受けるため Methoxylamine · HCl 20mg/mLピリジン溶液を100μL入れ, 振とうする(30℃, 90min) ※ピリジンは脱水したものを使用する、またピリジンは吸湿性が高いので注意 TMS化 MSTFAを50µL入れ,振とうする(37℃, 30min)

誘導体化の問題

~官能基によりTMS化のされやすさは異なる~

官能基によるTMS 化のされやすさは、


アルコール>フェノール>カルボン酸>アミン>アミドの順であり、

さらに立体障害の影響をうけるため,

そのなかで一級>二級>三級の順番になる

Handbook of Derivatives for Chromatography 2nd edition, Advances in Silylation

● Alanineは2TMS体と3TMS体が検出される

System: GC-MS

Column: InertCap 5MS/NP 0.25mm x 30m, df=0.25μm

Column Temp.: 80°C(2 min) - 15°C/min - 330°C(9 min)

Inj.: 230°C, Split 25:1 Carrier Gas: He 39cm/s Septum Purge: 5.0 mL/min

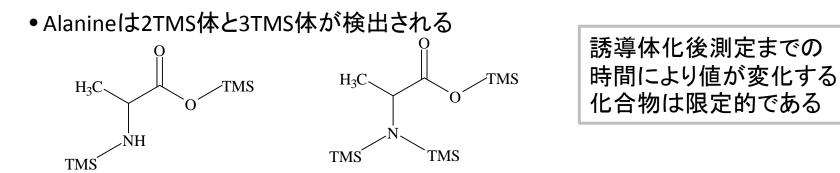
Inj. Vol.: 1 μL

Ion Source Temp.: 200° C Interface Temp.: 250° C Scan Range: m/z = 85 - 500 Scan Speed: $5000 \ u/s$

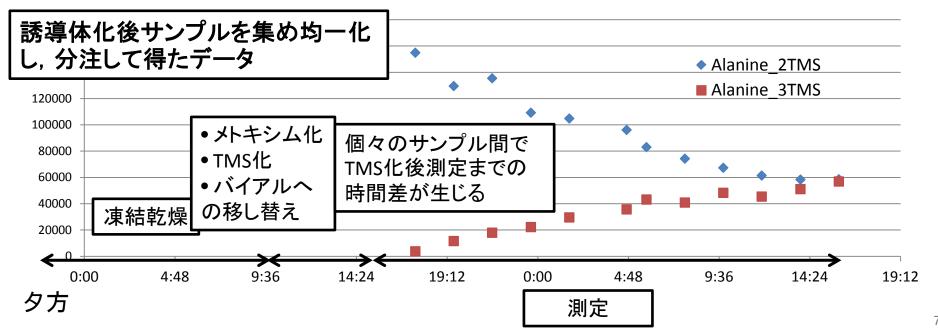
Alanine_2TMS

(RI: 1106)

Alanine_3TMS


(RI: 1372)

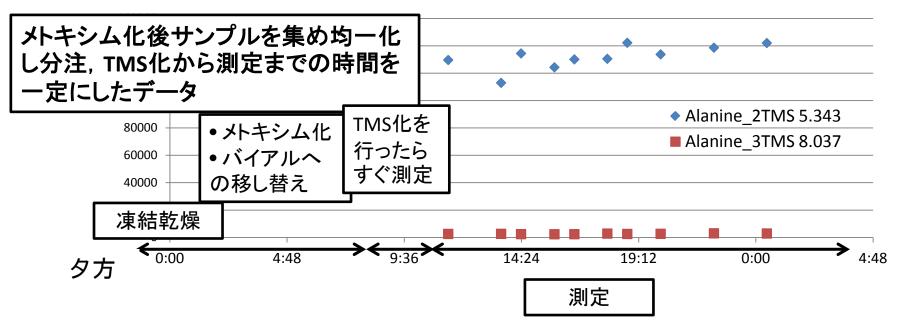
誘導体化の問題


~官能基によりTMS化のされやすさは異なる~

誘導体化後測定までの時間が、個々のサンプルによって異なるため、値は変化する

誘導体化後測定までの時間によるAlanineの2TMS体と3TMS体の変化

誘導体化の問題


~官能基によりTMS化のされやすさは異なる~

誘導体化後測定までの時間を一定にすることにより、値は一定になる

● Alanineは2TMS体と3TMS体が検出される

TMS化後測定までの時間を一定にした場合のAlanineの2TMS体と3TMS体の変化

検討した内容は共有をしていくことを考えている

http://www.gls.co.jp/technique/metabolomics/index.html

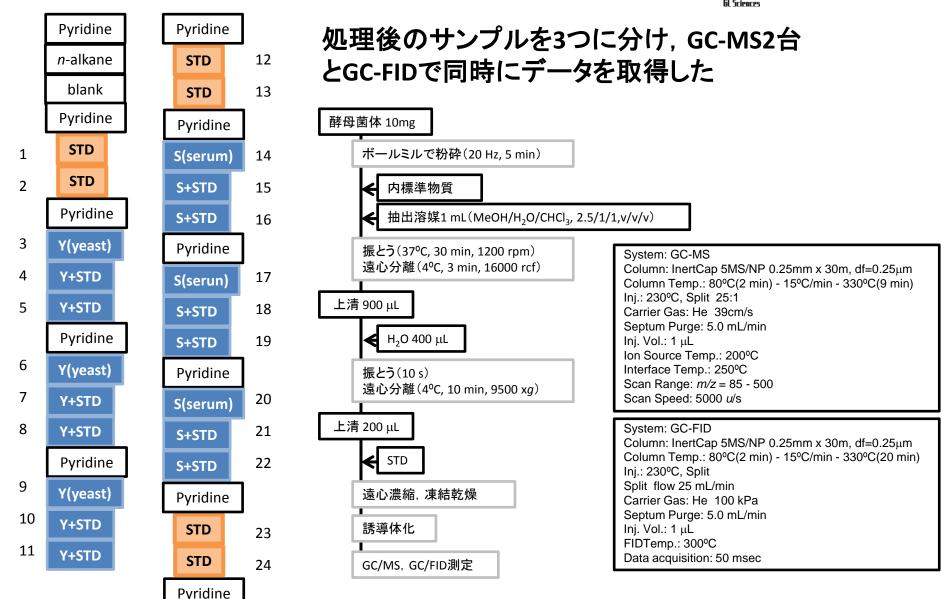
GC/MSは、誘導体化を行うことで代謝物・産生物を網羅的に測定でき、ライブラリを利用することができるため定性へのアプローチがしやすい点が特徴です。

〈測定例〉・微生物培養液の分析

・ <u>黒コショウ・白コショウの分析</u>

・ <u>日本酒・醤油・味噌の分析</u>

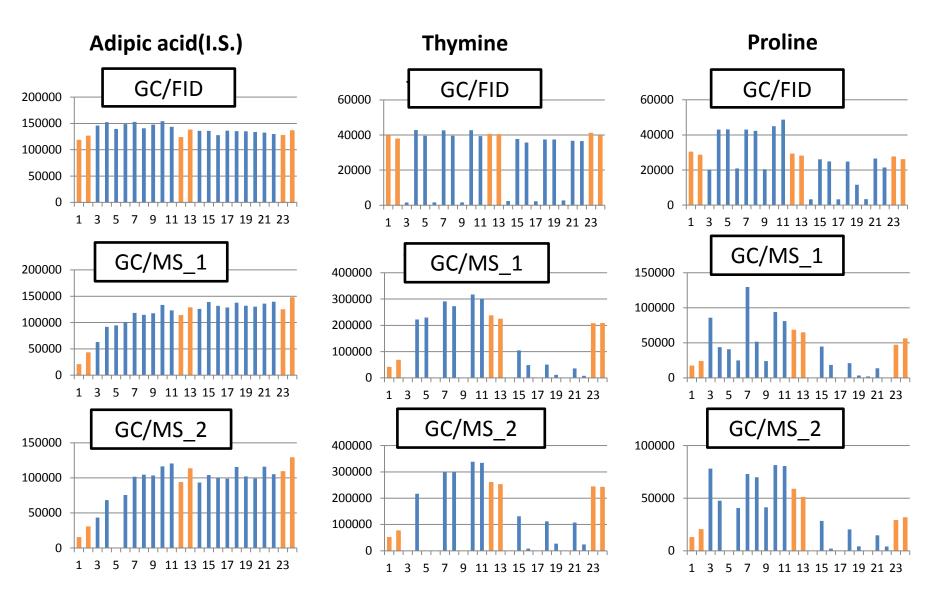
ライブラリの中には


4	A	В	С	D	E	F G	Н		J	K	L	M	N	0	Р
1	No. C	Compound name 5	別名	Public ID de :	Supple	e Sup(コメント1(変性,クロマトグラム,構造,	コメント2(sたキシ化,TMS化)	誘導体化後	Methox	TMS nur	Structure	RI	85	86	8.
19	117 0	α -Phenylglycine		3866				MM-15	0		[H]N[G]([H])G(=0)G[S](G)(G)G(G)=G([H])G([H])G([H])=G([H])G([H])G([H])=G([H])G([H])G([H])=G([H])G([H]	1530.47	0	0	- (
20	118 2	2-Thiouracil		1269845				MM-15	0	2	C[Si](C)(C)NI C=CC(=0)N(C1=S)(Si](C)(C)C	1530.96	20	12	
21	119 F	Pyroglutamic acid 5	5-Oxoprolir	r 499				MM-15	0		$[H] \cap ([H]) \cap (=0) \cap (\cap ([H]) \cap (=0) \cap ([Si]) \cap ((O)) \cap ([H]) \cap ([H]$	1532.89	0	12	
22	120 C	Dytosine		597			二重結合の0に水キシ基は付かない。	MM-1,M-15	0	2	[H N(C1=C([H])C([H])=NC(=0)NI [Si](C)(C)C)(Si](C)(C)C	1533.9	20	36	
23	122 4	4-Hydroxyproline		825				MM-15	0		$[H] \cap ([H]) \cap [C] ([H]) \cap ([C]) \cap [S] \cap ([H]) \cap ([H]$	1537.08	0	0	
24	123 ln	minodiacetic acid		8897				MM-15	0	3	C[Si](C)(C)CC(=0)CN(CC(=0)C[Si](C)(C)C)(Si](C)(C)C	1537.65	0	32	
25	141 F	Prephenic acid		1028	·	_1		不明	?	?		1539.1	35	13	
		4-Aminobutyric acid		119				MM-15	0	3	[H] C (H) (N [S] (C) C) C) (S] (C) (C) C (H) (H) (H) C (H) (H) (H) C (=0) C (S) (C) (C) (H) (H) (H) (C) (H) (H) (H) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	1541.33	12	176	20
27	ىا 125	Jhdecylic scid(C11)		8180				MM-15	0	1	ccccccccc(o)=0	1554.71	24	12	
28	135 0	α -Ketoslutaric acid		51	Minor .	_1		MM-15	1	2	CO¥N=C(¥CCC(=0)O[Si](C)(C)C)C(=0)O[Si](C)(C)C	1556.3	115	17	
29	126 F	Pyrogallol		1057				MM-15	0	3	[H] c1 = C([H]) C(C[S]) (C)(C)(C) = C(C[S]) (C)(C)(C)(C[S]) (C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(1561.31	0	0	
30	127 5	5-Methylcytosine		65040			二重結合の0に水キシ基は付かない。	MM-15	0	2	[H N(C1=C(C([H])=NC(=0)NI[Si](C)(C)C)C([H])([H])(H)([H])(C)(C)(1563.08	28	36	-
31	421 C	Dysteine		5862		Cysteineを測定するとCysteineとCys	stineの両者を検出する。CysteineがS-Sで結合し	M-15	0	3	[H]SO([H])([H])O([H])(N[Si](O)(C)C)[Si](O)(C)C)C(=0)O[Si](C)(C)	1567.7	14	23	
32	540 C	Dysteamine		6058		CysteamineがS-Sでつながったものと	としてライブラリーに登録。	M-15	0	2		1567.7	14	23	- (
33	128 3	3-Hydroxybenzoic acid		7420				MM-15	0	2	[H] @= @([H]) @= @([H]) @= @([Si]) @= @([H]) @= @([H]) @= @([Si]) @= @([Si]	1571.22	0	0	(
34	129 C	Dreatinine		588		分解が生じる。	Creatinine endとなり、3TMS体となる。	MM-15	0	3	ONI C=C(0[Si](C)(C)C)N=C1N[Si](C)(C)C)(Si](C)(C)C	1574	0	0	(

- 保持指標
- マススペクトル
- ●誘導体化後の構造(メトキシム基の数, TMS基の数, SMILES)
- 構造推定の有力なイオン
- 分解や変性の情報
- ●化合物名とPubChem CID
- Excel形式で収録, ESI友の会よりダウンロード可能になってる

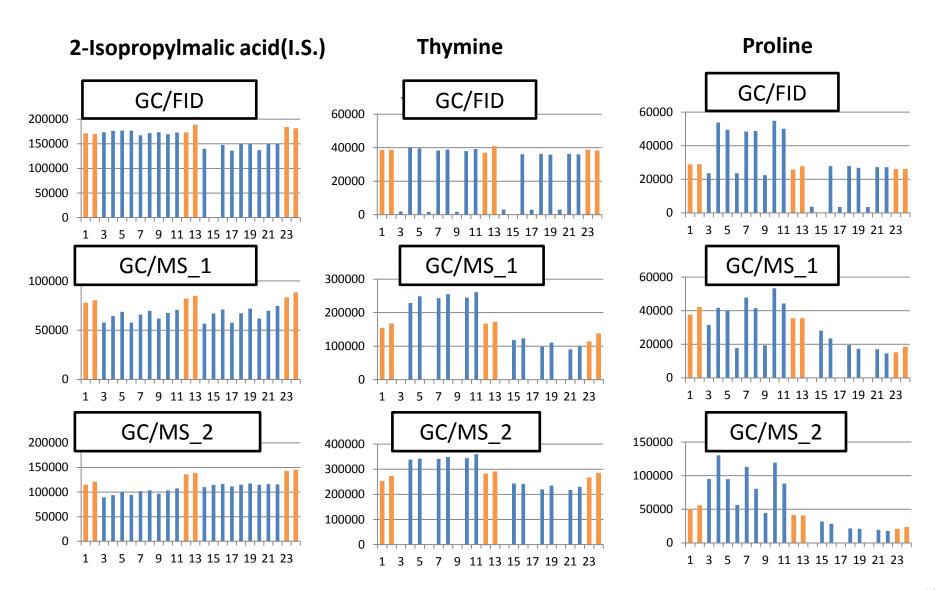
イオン化室におけるマトリックス効果

GC/FIDとGC/MSの比較



イオン化室におけるマトリックス効果

イオン源ボックスとリペラーの洗浄後、GC/FIDとGC/MSの比較



イオン化室におけるマトリックス効果

GC/FIDとGC/MSの比較,繰り返し実験

代謝産物の容器の選択について

代謝産物の容器に求められること

- 少容量(~2mL)
- •吸着,溶け込みがおきない
- 濃縮遠心, 凍結乾燥に適応できる
- 利便性
- •安価

抽出・精製時は・・・ 保管時は・・・

素材

- PF
- PP
- COP
- 透明のガラス
- 褐色のガラス など

メーカー

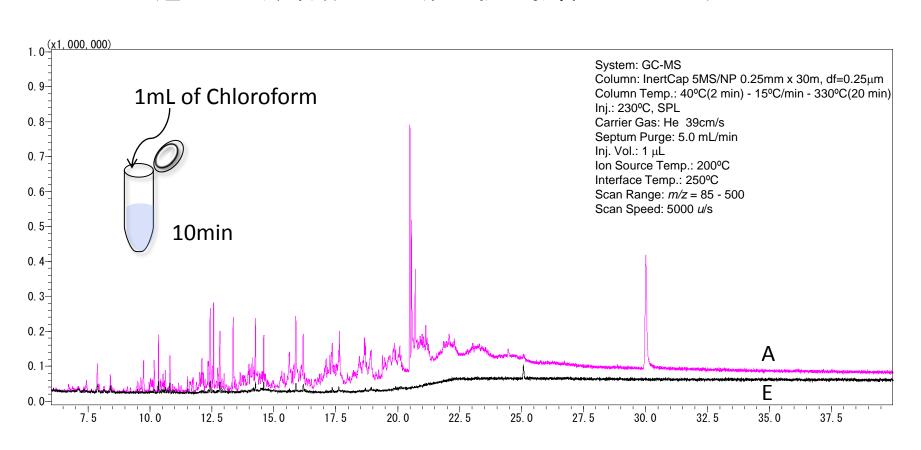
- A
- B
- C
- D
- E
- F
- G など

形状

- マイクロチューブ
- ・バイアル
- インサート入りバイアル
- •アンプル

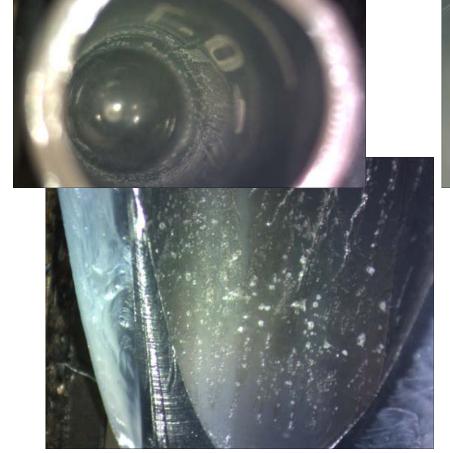
容量

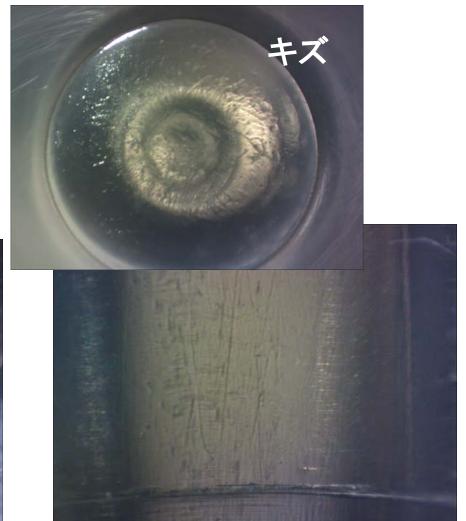
- ~0.3mL
- ~ 1.5mL
- ~2.0mL



代謝産物の容器の選択について ~樹脂製の容器の溶媒影響~

メーカーの違いにより、容器からの溶出物の影響の大きさは異なる




代謝産物の容器の選択について ~樹脂製の容器, 顕微鏡での観察~

析出物

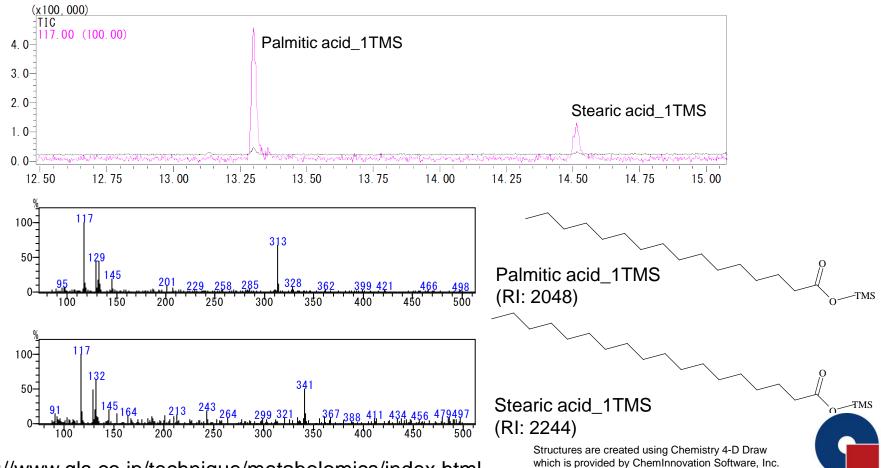
メーカーにより溶出物が多かったり、キズが多いものがある

代謝産物の容器の選択について ~樹脂製の容器のブランク~

樹脂製の容器は脂肪酸系の離型剤が使用されていることが多く、ブランクとして検出される場合がある

System: GC-MS

Column: InertCap 5MS/NP 0.25mm x 30m, df=0.25µm Column Temp.: 80°C(2 min) - 15°C/min - 330°C(9 min)

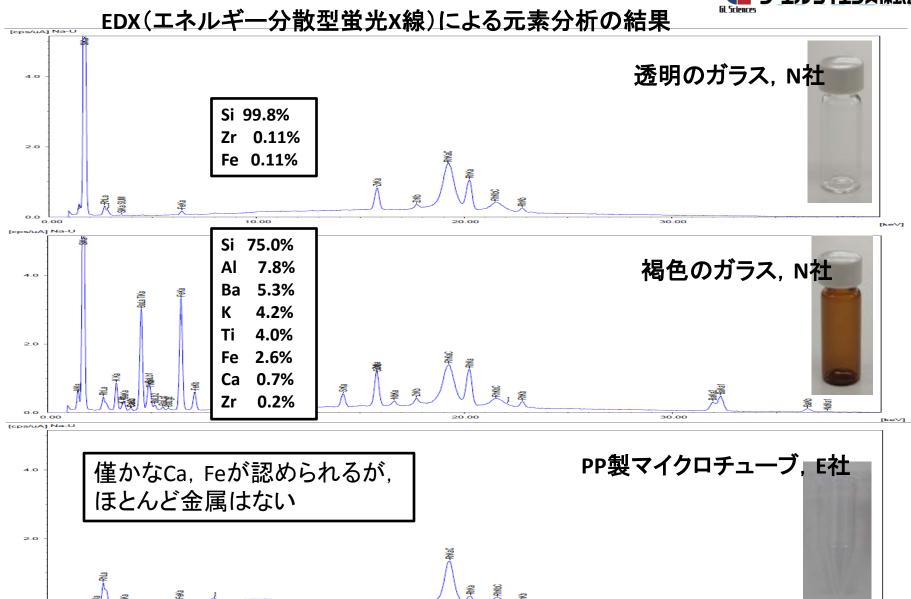

GL Sciences

Inj.: 230°C, Split 25:1 Carrier Gas: He 39cm/s Septum Purge: 5.0 mL/min

Inj. Vol.: 1 μL

Ion Source Temp.: 200°C Interface Temp.: 250°C Scan Range: m/z = 85 - 500Scan Speed: 5000 u/s

ポリプロピレンの容器でブランク測定をしたTICC



http://www.gls.co.jp/technique/metabolomics/index.html

代謝産物の容器の選択について

~容器の金属~

18

混合試料の保管試験(保管温度-30°C, 5°C) ~樹脂製容器への溶け込み~

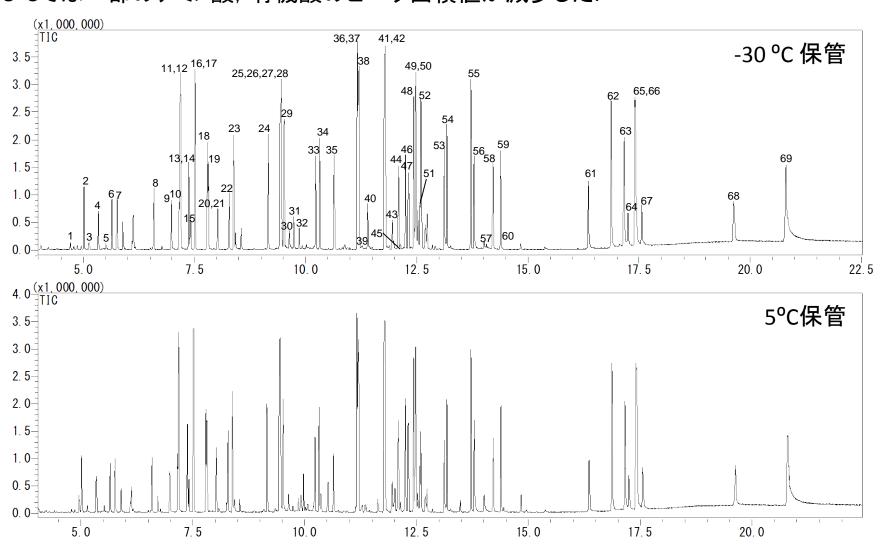
成分数:52種

解糖系(グルコース, ピルビン酸) TCA回路の有機酸 アミノ酸 核酸塩基

調製溶媒:メタノール(酢酸,クロロホルム,塩酸,硝酸,アンモニアを若干含む)

容器:0.5mL容PP製マイクロチューブ

濃度:0.2mmol/L


容量:200µL

保管温度:-30°C, 5°C

混合試料の保管試験から得られた結果(保管温度)

-30°Cと5°Cで、12ヶ月間混合試料を保管したところ、5°Cでは一部のアミノ酸、有機酸のピーク面積値が減少した。

混合試料の保管試験から得られた結果(保管温度)

-30°Cと5°Cで、12ヶ月間混合試料を保管したところ、 5°Cでは一部のアミノ酸、有機酸のピーク面積値が減少した。

809801

44950

5°C_1 |-30°C_2

797910

104053

932458 1104386

11.201 1939870 2000767 18883

No.	Compounds	R.T.	-30°C_1	5°C_1	-30°C_2	5°C_2	No.	Compounds	R.T.	-30°C_1	5°C_				
1	_Pyruvic acid _1TMS	4.711	51248	2080	_ 55244	2667	36	Ribitol 5TMS	11.165	828155	809				
2		5.017					37	=======================================	11.186						
3	Valine_1TMS	5.135	21622	21661	19856	19414	38	Putrescine_4TMS	11.201	1939870	2000				
4	Alanine_2TMS	/		′ 0	- 1 -0	- \ 0	\ 		_ 1.	<u> </u>					
5	Glycine_2TMS	保管》	品度((-30°	25°کC	C)(0)	遅い	で面積値に変化がは	カつた	化台:	杒				
6	Leucine_1TMS				_	•	_			. –					
7	7 Isoleucine_1TMS		Pyruvic acid												
8	Valine_2TMS	• α-Ketoglutaric acid													
9	Serine_2TMS	• α-ке	togii	itaric	acid										
10	_	• ^ ~ ~ ~	sitio o	منط											
11		Acor	IILIC a	acia											
12		• Gluta	amic	acid											
13		Glut	annic	aciu											
14	_	• Gluta	amin	Δ											
15	11011116_2111115	Glut	allilli	C											
16	_	• Tyro	cina												
17		Tylu	31116												
18		Cyste	eine												
19	Tarriarie dela_211VIS	Cyst	CILIC												
20	_														
21	_														
22	_														
23															
24															
25	_														
26	_														
27	, · ·														
28	,														
29															
30															
	_ Cysteine_3TMS	0.050	12172	1 20240	F00C1	21050	·	Maltaca 2	17 550	4FF4 <i>C</i> 2F	154				
	α-Ketoglutaric acid_2TMS	9.858					67		17.559						
33	_	10.228			1		68		19.627						
34		10.32					69	Raffinose	20.801	880869	932				
35	Asparagine_3TMS	10.645	252811	163537	147794	115195									

106455	45509						
1888360	1828180						
02	27538						
63	0						
38	768516						
98	768537						
45	293162						
60	681210						
24	34296						
60	319628						
22	192705						
46	486353						
00	518379						
20	163047						
13	98464						
<u>0</u> 0	<u>664379</u>						
47	334955						
98	418712						
33	506324						
54	641886						
18	119553						
13	341464						
64	383041						
53	51565						
53	98370						
22	961526						
43	328354						
05	130644						
85	1350702						
85	1350702						
184767	146360						
144602	108355						

994328

5°C_2 755644

混合試料の保管試験から得られた結果 (樹脂製容器, 保管温度 ←→ Room Temp.)

保管温度からRoom Temp.にし、 再度保管温度に戻す操作を7回 行った.

	-		-		•	-		•		•
	-30°C·大	-30°C・小	5℃·大	5°C·小	room·大	-30°C·大	-30°C・小	5°C·大	5°C·小	room·大
Pyruvic acid _1TMS	38011	44960	39899	21154	238	37694	53972	39722	24344	0
Glycolic acid_2TMS	105498	95116	97836	90910	98260	105828	101916	97045	97138	97715
Valine_1TMS	11707	13075	13308	13687	14613	13821	16459	13180	14655	15602
Alanine_2TMS	264138	253866	187779	208576	162650	148611	171068	124328	134780	115835
Leucine_1TMS	442801	434304	482701	485064	503922	474014	522524	504276	475522	523734
Isoleucine_1TMS	483891	487168	567937	538217	576483	538401	584065	593399	529801	600344
Valine_2TMS	562684	576585	625190	564566	519441	551831	595494	619350	542034	557554
Serine_2TMS	175018	153345	231911	180798	193145	169605	188585	216591	164855	197968
Leucine_2TMS	330115	354379	322045	316141	265224	304724	329405	312687	296685	264081
Phosphoric acid_3TMS	794813	742798	770790	642322	774903	789646	795730	712588	666983	804743
Glycerol_3TMS	629103	589386	629295	527996	678179	630337	638518	586700	565734	683839
Threonine 2TMS	107522	93875	185162	115090	130784	110720	121808	185625	104472	140669

- -30°C 保管で差が出た化合物
- Pyruvic acid
- Cysteine
- Glutamine 5°C保管で差が出た化合物
- Glutamic acid
- Aconitic acid

樹脂製の容器で保管する場合, 室温に戻したら使い切る

OLI	17531	34927	40303	24230	24100	25502	5808	49199	17000	19200
Glutamine_3TMS	840989	908870	752121	040040	877335	899564			000050	001001
Ornithine_4TMS	840989	908870	/52121	948240	877333	899304	982996	/84023	929058	931391
Isocitric acid_4TMS&Citiric acid_4TMS	1171845	1153227	1035817	946627	916720	1126304	1106524	1001172	980665	936964
Caffein	301965	300638	320928	286718	313431	313468	304386	300929	278919	317962
Adenine_2TMS	725565	725678	774630	700441	766793	759774	735820	722455	661716	750742
Asparagine_4TMS	62749	65458	130338	81458	84867	91728	93833	150396	85275	105120
Fructose_1	130749	145914	266993	218439	147023	130410	228269	221615	251717	104413
Fructose_2	75743	83811	156945	124622	85935	75899	134521	131137	144968	61000
Glucose_1	499988	501110	515884	487898	520136	467008	531348	484716	500487	510854
Lysine_4TMS	499759	536006	437631	547938	510515	519180	585363	461763	535257	521283
Histidine_3TMS	144198	200635	109289	183948	144710	178242	189332	137976	154354	158802
Glucose_2	91233	94023	94686	89552	99206	87860	97090	89667	93602	96264
Tyrosine_3TMS	1410023	1538906	1353726	1284032	1301692	1493217	1525312	1409108	1268985	1334190
Xanthine	426078	475004	428328	405625	454568	453127	466364	449665	389612	500195
Palmitic acid_1TMS	705945	651748	654423	593260	692401	697525	707233	639206	634516	709077
Inositol_6TMS	854864	836506	811136	766063	811656	798854	847896	814023	790911	880925
Guanine_3TMS	724359	750201	772921	703456	718744	750439	762027	733655	672402	777309
Tryptophan	241679	208306	191049	110228	65195	84113	77162	109575	59186	49538
Tryptophan_2TMS	456739	514576	450264	556970	327098	529645	585630	464747	523110	333884
Stearic acid_1TMS	673148	598945	639745	565646	655250	679230	619138	628794	593150	669953
Tryptophan_3TMS	155783	167815	219090	217362	196735	260352	285207	324143	276794	269192
Inosine_4TMS	335584	317717	334952	293257	69236	377092	348231	343641	287672	75740
Sucrose	2195429	2143368	2165875	1951513	2005715	2046885	2018174	2193930	1995298	2208345
b-Lactose_1	657679	676795	708030	647712	731735	658236	708542	701526	683053	699489
b-Lactose_2	192287	191472	225494	192196	220537	193643	202596	222009	199118	207514
Trehalose&Maltose_1	3083163	3150124	3112537	2812145	2995358	2946714	3097630	3152035	2870747	3168041
Maltose_2	285559	296289	327900	274883	289478	262463	306218	332545	278272	304300
Ergosterol_1TMS	270307	259245	230080	213983	110717	267290	249874	225955	219020	111825
Raffinose	2606233	2528989	2619029	2341910	2388835	2538355	2551757	2660476	2414591	2598649

GC・GC/MSメタボロミクス用代謝物質混合試料 仕様からの抜粋

成分数:52種

調製溶媒:メタノール

(安定性確保のため、5グループに分けています.

グループにより、酢酸、クロロホルム、塩酸、硝酸、アンモニアを若干含みます.)

容器:0.5mL容PP製マイクロチューブ

濃度:0.2mmol/L(濃度調製法は重量法を採用しています.)

容量:200µL

保管温度:-30°C

入数:40セット合計200本(40個x5グループ)

その他: 秤量実績表, プロトコール, 分解・変性しやすい化合物についての注意書き

を同封します.

混合試料には、分解変性し易い成分も含まれています。代謝物質の混合において、 分解変性の起きにくい条件で調製し保管温度と保管容器を決めました。 濃度調製法 は重量法を採用し、調製後の濃度の値付けは行っておりません.

まとめ

- 見積もれる系統誤差は同じ組成のサンプル(QC)を一定間隔で測定することで補正されるが、誘導体化や装置による変動など何が起こっているかを知っておくことが重要である.
- •誘導体化 官能基によりTMS化のされやすさは異なる,加水分解が起こる.
- イオン化室におけるマトリックス効果マトリックス効果は、見積もれない系統誤差なので、要因や対策を検討していく必要がある。
- ・代謝物質の容器と保管 容器の材質や不純物などの情報を知っておくことが重要で、用途に応じて 選択する必要がある。

謝辞

大阪大学大学院工学研究科 生命先端工学専攻

福崎 英一郎 教授 松尾 晃子 様

九州大学 生体防御医学研究所
附属トランスオミクス医学研究センター メタボロミクス分野

馬場 健史教授

(独)理化学研究所 CSRS

津川 裕司 先生

ジーエルサイエンス(株) 技術開発部

古野 正浩 様本川 正規 様

