

赤外顕微鏡と IR イメージング

1 はじめに

赤外顕微鏡は 1953 年に V. J. Coates が直径 20 μm の 単繊維の赤外(IR)スペクトルを取得したことが始ま りである¹⁾。1980 年代には,固体中の異物や微小部の 定性分析のツールとして急速にその需要が高まった。最 近ではアレイ検出器を赤外顕微鏡に組み込んだ二次元の 化学情報を取得する FTIR イメージング(IR イメージ ング)法が固体表面のキャラクタリゼーションの研究に 幅広く利用されている^{2)~4)}。さらに,IR イメージング は需要の拡大に伴って,IR の波長限界を超えた空間分 解能を有する ATR (attenuated total reflection) イメー ジングが市販されるようになった。

本稿では、赤外顕微鏡やIR イメージングの簡単な測 定原理と得られる情報について記すとともに、最先端技 術である ATR イメージングの画像処理能力を紹介する。

2 赤外顕微鏡

赤外顕微鏡の光学系は、大きく分けると、図1に示 すようなカセグレンによる集光、アパーチャーによる測 定視野のマスク、MCT 検出器による IR 光の検出で構 成されている。赤外顕微鏡ではカセグレンを用いている ため、最高空間分解能 Δ*d* は下式(1),(2)で示される。

 $\Delta d = \alpha \lambda / 2NA \dots (1)$

 λ は波長, *NA*は対物レンズ(カセグレン)の開口数, α は斜入射光の寄与係数(1.22が使用される)である。 また, *NA*は $n\sin\theta$ である。nはカセグレンとサンプ ル間の屈折率, θ は光軸に対する最外角である。 θ は装 置によって異なる。*NA*=0.6, a=1.22とした場合,

 $\Delta d = 1.02 \lambda \quad \dots \quad (2)$

図1 赤外顕微鏡の光学系模式図

となり,空間分解能 Δd は波長とほぼ同じになる。した がって,赤外顕微鏡は約 10 μ m の微小部を測定できる ことになる。

3 IR イメージング

IR イメージングは赤外顕微鏡の光学系にアレイ検出 器を搭載している。アレイ検出器は複数の検出素子を搭 載している。そのため、赤外顕微鏡が1回の測定で一 つの IR スペクトルを得るのに対して、IR イメージン グは1回の測定で搭載している検出素子の数だけの IR スペクトルを取得することができる。

市販の IR イメージングシステムには2種類の方式が ある。その2種類の大きな違いは使用している検出器 にある。一つは複数の検出素子を1列に配列した一次 元アレイ(リニアアレイ)検出器,他方はデジタルカメ ラのように二次元平面に検出素子を配列した二次元アレ イ(focal-plane array; FPA)検出器を用いている。

リニアアレイは自動ステージを利用して、1 列ずつ順 次測定を繰り返し、広範囲の測定を行う。測定面積の自 由度が高い方式である。一度の測定で10万を越えるス ペクトルを取得することもできる。一方、FPA は検出 素子の数に応じた二次元情報を瞬時に取得する。測定は ニリアアレイに比べて速いが、素子数に限りがあるた め、一度に測定できる面積は限られる。現在市販されて いる装置の多くはリニアアレイ検出器を採用している。 以下ではリニアアレイ検出器を用いた例について説明す る。

IR イメージングデータは、図2 に模式的に示したような化学情報(IR スペクトル情報)に基づいた二次元

分布を瞬時に供給する。

赤外顕微鏡下で可視画像を観察したのち, IR イメー ジング測定範囲を決定する。測定範囲を数μm あるいは 数十μm ごとのピクセルに分割して走査すると, ピクセ ルごとに IR スペクトルが格納される(市販装置の透過 あるいは反射測定における最小ピクセルサイズは 6.25 μm)。図2(a)には概念を示しているが,実際には疑似 カラーなどのように色分して表示される。これが IR イ メージデータとなる。最終的に, イメージデータ中に格 納されたスペクトルを解析し, 図2(b), (c)のような成 分ごとの分布(ケミカルイメージ)を表示する方法が IR イメージング法である。

IR イメージングには他の解析法も適用することがで きる。それは多変量解析法である。IR イメージング データには多数のスペクトル(変数)が存在するため, 主成分分析 (PCA) などが使用でき, PCA を用いれば, 自動的に成分分布を示すことやノイズ除去を行える。

4 ATR イメージング

ATR 法は前処理をほとんど必要としない手法の一つ として利用されている。

ATR イメージングは透過法でも反射法でも測定でき ないようなサンプルに対して有効である。また,それだ けではなく,空間分解能も飛躍的に向上している。

多くの場合, ATR イメージングには Ge クリスタル が利用される。中赤外波長における Ge の屈折率 n は約 4.0 である。これを式(1)に代入すると,空間分解能は 透過/反射法よりも4倍向上することがわかる。実際の ATR イメージング測定における空間分解能は約3μm を示す。

図3には、ATRイメージングの測定例として、積層 フィルム断面のケミカルイメージデータを示した。この 図にはスペクトルが1000個格納されている。個々のス ペクトルを自動的に認識して識別する多変量解析 PCA によって各層の成分を自動検出した。図3では検出さ れた六つの成分を重ね書きしている。図4にそれぞれ の成分分布を示す。次に各層の成分を同定するためにス ペクトル解析を行った。成分1は包埋樹脂層である。 成分2と3は積層フィルムの主成分であり、それぞれ ポリエチレン (PE) とポリアミド樹脂 (PA) の層であっ た。PEとPAに挟まれた成分4には厚み6µmの中間 層が検出された。この中間層はオレフィン系の接着層で あるとみられた。積層フィルムの最外層には成分5と6 が検出され、それぞれエステル系ポリマーと水酸基を有 するエチレンビニルアルコールと予想されるわずか3 µm 程度の層が検出されていた。このように高い空間分 解能を持つ ATR イメージングは薄層を有する積層フィ ルムであってもその構造を明確にすることができる。

5 まとめ

赤外顕微鏡から進化した IR イメージングは化学情報 に基づいた二次元分布を画像として示し,これまでの赤 外顕微鏡以上の情報を提供する。

図3 積層フィルム断面の ATR イメージング測定例

図4 各層成分の分布

文 献

- V. J. Coates, A. Offner, E. H. Seigler : J. Opt. Soc. Am., 43, 984 (1953).
- S. Šašić, Y. Ozaki (Ed.): "Raman, Infrared and Near-Infrared Chemical Imaging", (2010), (John Wiley & Sons Inc.)
- 3) 大西晃宏: Polyfile, 44, No. 524, 32 (2007).
- 西岡利勝,寺前紀夫編: "実用分光法シリーズ 顕微赤外分 光法",(2003),(アイピーシー).

〔㈱パーキンエルマージャパン 大西晃宏〕

ぶんせき 2013 2